forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
neural_gpu.py
322 lines (281 loc) · 13 KB
/
neural_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The Neural GPU Model."""
import time
import tensorflow as tf
import data_utils
def conv_linear(args, kw, kh, nin, nout, do_bias, bias_start, prefix):
"""Convolutional linear map."""
assert args is not None
if not isinstance(args, (list, tuple)):
args = [args]
with tf.variable_scope(prefix):
k = tf.get_variable("CvK", [kw, kh, nin, nout])
if len(args) == 1:
res = tf.nn.conv2d(args[0], k, [1, 1, 1, 1], "SAME")
else:
res = tf.nn.conv2d(tf.concat(3, args), k, [1, 1, 1, 1], "SAME")
if not do_bias: return res
bias_term = tf.get_variable("CvB", [nout],
initializer=tf.constant_initializer(0.0))
return res + bias_term + bias_start
def sigmoid_cutoff(x, cutoff):
"""Sigmoid with cutoff, e.g., 1.2sigmoid(x) - 0.1."""
y = tf.sigmoid(x)
if cutoff < 1.01: return y
d = (cutoff - 1.0) / 2.0
return tf.minimum(1.0, tf.maximum(0.0, cutoff * y - d))
def tanh_cutoff(x, cutoff):
"""Tanh with cutoff, e.g., 1.1tanh(x) cut to [-1. 1]."""
y = tf.tanh(x)
if cutoff < 1.01: return y
d = (cutoff - 1.0) / 2.0
return tf.minimum(1.0, tf.maximum(-1.0, (1.0 + d) * y))
def conv_gru(inpts, mem, kw, kh, nmaps, cutoff, prefix):
"""Convolutional GRU."""
def conv_lin(args, suffix, bias_start):
return conv_linear(args, kw, kh, len(args) * nmaps, nmaps, True, bias_start,
prefix + "/" + suffix)
reset = sigmoid_cutoff(conv_lin(inpts + [mem], "r", 1.0), cutoff)
# candidate = tanh_cutoff(conv_lin(inpts + [reset * mem], "c", 0.0), cutoff)
candidate = tf.tanh(conv_lin(inpts + [reset * mem], "c", 0.0))
gate = sigmoid_cutoff(conv_lin(inpts + [mem], "g", 1.0), cutoff)
return gate * mem + (1 - gate) * candidate
@tf.RegisterGradient("CustomIdG")
def _custom_id_grad(_, grads):
return grads
def quantize(t, quant_scale, max_value=1.0):
"""Quantize a tensor t with each element in [-max_value, max_value]."""
t = tf.minimum(max_value, tf.maximum(t, -max_value))
big = quant_scale * (t + max_value) + 0.5
with tf.get_default_graph().gradient_override_map({"Floor": "CustomIdG"}):
res = (tf.floor(big) / quant_scale) - max_value
return res
def quantize_weights_op(quant_scale, max_value):
ops = [v.assign(quantize(v, quant_scale, float(max_value)))
for v in tf.trainable_variables()]
return tf.group(*ops)
def relaxed_average(var_name_suffix, rx_step):
"""Calculate the average of relaxed variables having var_name_suffix."""
relaxed_vars = []
for l in xrange(rx_step):
with tf.variable_scope("RX%d" % l, reuse=True):
try:
relaxed_vars.append(tf.get_variable(var_name_suffix))
except ValueError:
pass
dsum = tf.add_n(relaxed_vars)
avg = dsum / len(relaxed_vars)
diff = [v - avg for v in relaxed_vars]
davg = tf.add_n([d*d for d in diff])
return avg, tf.reduce_sum(davg)
def relaxed_distance(rx_step):
"""Distance between relaxed variables and their average."""
res, ops, rx_done = [], [], {}
for v in tf.trainable_variables():
if v.name[0:2] == "RX":
rx_name = v.op.name[v.name.find("/") + 1:]
if rx_name not in rx_done:
avg, dist_loss = relaxed_average(rx_name, rx_step)
res.append(dist_loss)
rx_done[rx_name] = avg
ops.append(v.assign(rx_done[rx_name]))
return tf.add_n(res), tf.group(*ops)
def make_dense(targets, noclass):
"""Move a batch of targets to a dense 1-hot representation."""
with tf.device("/cpu:0"):
shape = tf.shape(targets)
batch_size = shape[0]
indices = targets + noclass * tf.range(0, batch_size)
length = tf.expand_dims(batch_size * noclass, 0)
dense = tf.sparse_to_dense(indices, length, 1.0, 0.0)
return tf.reshape(dense, [-1, noclass])
def check_for_zero(sparse):
"""In a sparse batch of ints, make 1.0 if it's 0 and 0.0 else."""
with tf.device("/cpu:0"):
shape = tf.shape(sparse)
batch_size = shape[0]
sparse = tf.minimum(sparse, 1)
indices = sparse + 2 * tf.range(0, batch_size)
dense = tf.sparse_to_dense(indices, tf.expand_dims(2 * batch_size, 0),
1.0, 0.0)
reshaped = tf.reshape(dense, [-1, 2])
return tf.reshape(tf.slice(reshaped, [0, 0], [-1, 1]), [-1])
class NeuralGPU(object):
"""Neural GPU Model."""
def __init__(self, nmaps, vec_size, niclass, noclass, dropout, rx_step,
max_grad_norm, cutoff, nconvs, kw, kh, height, mode,
learning_rate, pull, pull_incr, min_length, act_noise=0.0):
# Feeds for parameters and ops to update them.
self.global_step = tf.Variable(0, trainable=False)
self.cur_length = tf.Variable(min_length, trainable=False)
self.cur_length_incr_op = self.cur_length.assign_add(1)
self.lr = tf.Variable(float(learning_rate), trainable=False)
self.lr_decay_op = self.lr.assign(self.lr * 0.98)
self.pull = tf.Variable(float(pull), trainable=False)
self.pull_incr_op = self.pull.assign(self.pull * pull_incr)
self.do_training = tf.placeholder(tf.float32, name="do_training")
self.noise_param = tf.placeholder(tf.float32, name="noise_param")
# Feeds for inputs, targets, outputs, losses, etc.
self.input = []
self.target = []
for l in xrange(data_utils.forward_max + 1):
self.input.append(tf.placeholder(tf.int32, name="inp{0}".format(l)))
self.target.append(tf.placeholder(tf.int32, name="tgt{0}".format(l)))
self.outputs = []
self.losses = []
self.grad_norms = []
self.updates = []
# Computation.
inp0_shape = tf.shape(self.input[0])
batch_size = inp0_shape[0]
with tf.device("/cpu:0"):
emb_weights = tf.get_variable(
"embedding", [niclass, vec_size],
initializer=tf.random_uniform_initializer(-1.7, 1.7))
e0 = tf.scatter_update(emb_weights,
tf.constant(0, dtype=tf.int32, shape=[1]),
tf.zeros([1, vec_size]))
adam = tf.train.AdamOptimizer(self.lr, epsilon=1e-4)
# Main graph creation loop, for every bin in data_utils.
self.steps = []
for length in sorted(list(set(data_utils.bins + [data_utils.forward_max]))):
data_utils.print_out("Creating model for bin of length %d." % length)
start_time = time.time()
if length > data_utils.bins[0]:
tf.get_variable_scope().reuse_variables()
# Embed inputs and calculate mask.
with tf.device("/cpu:0"):
with tf.control_dependencies([e0]):
embedded = [tf.nn.embedding_lookup(emb_weights, self.input[l])
for l in xrange(length)]
# Mask to 0-out padding space in each step.
imask = [check_for_zero(self.input[l]) for l in xrange(length)]
omask = [check_for_zero(self.target[l]) for l in xrange(length)]
mask = [1.0 - (imask[i] * omask[i]) for i in xrange(length)]
mask = [tf.reshape(m, [-1, 1]) for m in mask]
# Use a shifted mask for step scaling and concatenated for weights.
shifted_mask = mask + [tf.zeros_like(mask[0])]
scales = [shifted_mask[i] * (1.0 - shifted_mask[i+1])
for i in xrange(length)]
scales = [tf.reshape(s, [-1, 1, 1, 1]) for s in scales]
mask = tf.concat(1, mask[0:length]) # batch x length
weights = mask
# Add a height dimension to mask to use later for masking.
mask = tf.reshape(mask, [-1, length, 1, 1])
mask = tf.concat(2, [mask for _ in xrange(height)]) + tf.zeros(
tf.pack([batch_size, length, height, nmaps]), dtype=tf.float32)
# Start is a length-list of batch-by-nmaps tensors, reshape and concat.
start = [tf.tanh(embedded[l]) for l in xrange(length)]
start = [tf.reshape(start[l], [-1, 1, nmaps]) for l in xrange(length)]
start = tf.reshape(tf.concat(1, start), [-1, length, 1, nmaps])
# First image comes from start by applying one convolution and adding 0s.
first = conv_linear(start, 1, 1, vec_size, nmaps, True, 0.0, "input")
first = [first] + [tf.zeros(tf.pack([batch_size, length, 1, nmaps]),
dtype=tf.float32) for _ in xrange(height - 1)]
first = tf.concat(2, first)
# Computation steps.
keep_prob = 1.0 - self.do_training * (dropout * 8.0 / float(length))
step = [tf.nn.dropout(first, keep_prob) * mask]
act_noise_scale = act_noise * self.do_training * self.pull
outputs = []
for it in xrange(length):
with tf.variable_scope("RX%d" % (it % rx_step)) as vs:
if it >= rx_step:
vs.reuse_variables()
cur = step[it]
# Do nconvs-many CGRU steps.
for layer in xrange(nconvs):
cur = conv_gru([], cur, kw, kh, nmaps, cutoff, "cgru_%d" % layer)
cur *= mask
outputs.append(tf.slice(cur, [0, 0, 0, 0], [-1, -1, 1, -1]))
cur = tf.nn.dropout(cur, keep_prob)
if act_noise > 0.00001:
cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
step.append(cur * mask)
self.steps.append([tf.reshape(s, [-1, length, height * nmaps])
for s in step])
# Output is the n-th step output; n = current length, as in scales.
output = tf.add_n([outputs[i] * scales[i] for i in xrange(length)])
# Final convolution to get logits, list outputs.
output = conv_linear(output, 1, 1, nmaps, noclass, True, 0.0, "output")
output = tf.reshape(output, [-1, length, noclass])
external_output = [tf.reshape(o, [-1, noclass])
for o in list(tf.split(1, length, output))]
external_output = [tf.nn.softmax(o) for o in external_output]
self.outputs.append(external_output)
# Calculate cross-entropy loss and normalize it.
targets = tf.concat(1, [make_dense(self.target[l], noclass)
for l in xrange(length)])
targets = tf.reshape(targets, [-1, noclass])
xent = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
tf.reshape(output, [-1, noclass]), targets), [-1, length])
perp_loss = tf.reduce_sum(xent * weights)
perp_loss /= tf.cast(batch_size, dtype=tf.float32)
perp_loss /= length
# Final loss: cross-entropy + shared parameter relaxation part.
relax_dist, self.avg_op = relaxed_distance(rx_step)
total_loss = perp_loss + relax_dist * self.pull
self.losses.append(perp_loss)
# Gradients and Adam update operation.
if length == data_utils.bins[0] or (mode == 0 and
length < data_utils.bins[-1] + 1):
data_utils.print_out("Creating backward for bin of length %d." % length)
params = tf.trainable_variables()
grads = tf.gradients(total_loss, params)
grads, norm = tf.clip_by_global_norm(grads, max_grad_norm)
self.grad_norms.append(norm)
for grad in grads:
if isinstance(grad, tf.Tensor):
grad += tf.truncated_normal(tf.shape(grad)) * self.noise_param
update = adam.apply_gradients(zip(grads, params),
global_step=self.global_step)
self.updates.append(update)
data_utils.print_out("Created model for bin of length %d in"
" %.2f s." % (length, time.time() - start_time))
self.saver = tf.train.Saver(tf.all_variables())
def step(self, sess, inp, target, do_backward, noise_param=None,
get_steps=False):
"""Run a step of the network."""
assert len(inp) == len(target)
length = len(target)
feed_in = {}
feed_in[self.noise_param.name] = noise_param if noise_param else 0.0
feed_in[self.do_training.name] = 1.0 if do_backward else 0.0
feed_out = []
index = len(data_utils.bins)
if length < data_utils.bins[-1] + 1:
index = data_utils.bins.index(length)
if do_backward:
feed_out.append(self.updates[index])
feed_out.append(self.grad_norms[index])
feed_out.append(self.losses[index])
for l in xrange(length):
feed_in[self.input[l].name] = inp[l]
for l in xrange(length):
feed_in[self.target[l].name] = target[l]
feed_out.append(self.outputs[index][l])
if get_steps:
for l in xrange(length+1):
feed_out.append(self.steps[index][l])
res = sess.run(feed_out, feed_in)
offset = 0
norm = None
if do_backward:
offset = 2
norm = res[1]
outputs = res[offset + 1:offset + 1 + length]
steps = res[offset + 1 + length:] if get_steps else None
return res[offset], outputs, norm, steps