forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
names.py
262 lines (209 loc) · 9.12 KB
/
names.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A library showing off sequence recognition and generation with the simple
example of names.
We use recurrent neural nets to learn complex functions able to recogize and
generate sequences of a given form. This can be used for natural language
syntax recognition, dynamically generating maps or puzzles and of course
baby name generation.
Before using this module, it is recommended to read the Tensorflow tutorial on
recurrent neural nets, as it explains the basic concepts of this model, and
will show off another module, the PTB module on which this model bases itself.
Here is an overview of the functions available in this module:
* RNN Module for sequence functions based on PTB
* Name recognition specifically for recognizing names, but can be adapted to
recognizing sequence patterns
* Name generations specifically for generating names, but can be adapted to
generating arbitrary sequence patterns
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import tensorflow as tf
import numpy as np
from model import NamignizerModel
import data_utils
class SmallConfig(object):
"""Small config."""
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 20
hidden_size = 200
max_epoch = 4
max_max_epoch = 13
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 27
epoch_size = 100
class LargeConfig(object):
"""Medium config."""
init_scale = 0.05
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 35
hidden_size = 650
max_epoch = 6
max_max_epoch = 39
keep_prob = 0.5
lr_decay = 0.8
batch_size = 20
vocab_size = 27
epoch_size = 100
class TestConfig(object):
"""Tiny config, for testing."""
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 1
num_layers = 1
num_steps = 2
hidden_size = 2
max_epoch = 1
max_max_epoch = 1
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 27
epoch_size = 100
def run_epoch(session, m, names, counts, epoch_size, eval_op, verbose=False):
"""Runs the model on the given data for one epoch
Args:
session: the tf session holding the model graph
m: an instance of the NamignizerModel
names: a set of lowercase names of 26 characters
counts: a list of the frequency of the above names
epoch_size: the number of batches to run
eval_op: whether to change the params or not, and how to do it
Kwargs:
verbose: whether to print out state of training during the epoch
Returns:
cost: the average cost during the last stage of the epoch
"""
start_time = time.time()
costs = 0.0
iters = 0
for step, (x, y) in enumerate(data_utils.namignizer_iterator(names, counts,
m.batch_size, m.num_steps, epoch_size)):
cost, _ = session.run([m.cost, eval_op],
{m.input_data: x,
m.targets: y,
m.initial_state: m.initial_state.eval(),
m.weights: np.ones(m.batch_size * m.num_steps)})
costs += cost
iters += m.num_steps
if verbose and step % (epoch_size // 10) == 9:
print("%.3f perplexity: %.3f speed: %.0f lps" %
(step * 1.0 / epoch_size, np.exp(costs / iters),
iters * m.batch_size / (time.time() - start_time)))
if step >= epoch_size:
break
return np.exp(costs / iters)
def train(data_dir, checkpoint_path, config):
"""Trains the model with the given data
Args:
data_dir: path to the data for the model (see data_utils for data
format)
checkpoint_path: the path to save the trained model checkpoints
config: one of the above configs that specify the model and how it
should be run and trained
Returns:
None
"""
# Prepare Name data.
print("Reading Name data in %s" % data_dir)
names, counts = data_utils.read_names(data_dir)
with tf.Graph().as_default(), tf.Session() as session:
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.variable_scope("model", reuse=None, initializer=initializer):
m = NamignizerModel(is_training=True, config=config)
tf.initialize_all_variables().run()
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session, m, names, counts, config.epoch_size, m.train_op,
verbose=True)
print("Epoch: %d Train Perplexity: %.3f" %
(i + 1, train_perplexity))
m.saver.save(session, checkpoint_path, global_step=i)
def namignize(names, checkpoint_path, config):
"""Recognizes names and prints the Perplexity of the model for each names
in the list
Args:
names: a list of names in the model format
checkpoint_path: the path to restore the trained model from, should not
include the model name, just the path to
config: one of the above configs that specify the model and how it
should be run and trained
Returns:
None
"""
with tf.Graph().as_default(), tf.Session() as session:
with tf.variable_scope("model"):
m = NamignizerModel(is_training=False, config=config)
m.saver.restore(session, checkpoint_path)
for name in names:
x, y = data_utils.name_to_batch(name, m.batch_size, m.num_steps)
cost, loss, _ = session.run([m.cost, m.loss, tf.no_op()],
{m.input_data: x,
m.targets: y,
m.initial_state: m.initial_state.eval(),
m.weights: np.concatenate((
np.ones(len(name)), np.zeros(m.batch_size * m.num_steps - len(name))))})
print("Name {} gives us a perplexity of {}".format(
name, np.exp(cost)))
def namignator(checkpoint_path, config):
"""Generates names randomly according to a given model
Args:
checkpoint_path: the path to restore the trained model from, should not
include the model name, just the path to
config: one of the above configs that specify the model and how it
should be run and trained
Returns:
None
"""
# mutate the config to become a name generator config
config.num_steps = 1
config.batch_size = 1
with tf.Graph().as_default(), tf.Session() as session:
with tf.variable_scope("model"):
m = NamignizerModel(is_training=False, config=config)
m.saver.restore(session, checkpoint_path)
activations, final_state, _ = session.run([m.activations, m.final_state, tf.no_op()],
{m.input_data: np.zeros((1, 1)),
m.targets: np.zeros((1, 1)),
m.initial_state: m.initial_state.eval(),
m.weights: np.ones(1)})
# sample from our softmax activations
next_letter = np.random.choice(27, p=activations[0])
name = [next_letter]
while next_letter != 0:
activations, final_state, _ = session.run([m.activations, m.final_state, tf.no_op()],
{m.input_data: [[next_letter]],
m.targets: np.zeros((1, 1)),
m.initial_state: final_state,
m.weights: np.ones(1)})
next_letter = np.random.choice(27, p=activations[0])
name += [next_letter]
print(map(lambda x: chr(x + 96), name))
if __name__ == "__main__":
# train("data/SmallNames.txt", "model/namignizer", SmallConfig)
# namignize(["mary", "ida", "gazorbazorb", "mmmhmm", "bob"],
# tf.train.latest_checkpoint("model"), SmallConfig)
# namignator(tf.train.latest_checkpoint("model"), SmallConfig)