forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
neural_gpu_trainer.py
398 lines (355 loc) · 16.3 KB
/
neural_gpu_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
"""Neural GPU for Learning Algorithms."""
import math
import os
import random
import sys
import time
import matplotlib.animation as anim
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
import data_utils as data
import neural_gpu
tf.app.flags.DEFINE_float("lr", 0.1, "Learning rate.")
tf.app.flags.DEFINE_float("init_weight", 1.0, "Initial weights deviation.")
tf.app.flags.DEFINE_float("max_grad_norm", 0.05, "Clip gradients to this norm.")
tf.app.flags.DEFINE_float("cutoff", 1.2, "Cutoff at the gates.")
tf.app.flags.DEFINE_float("pull", 0.0005, "Starting pull of the relaxations.")
tf.app.flags.DEFINE_float("pull_incr", 1.2, "Increase pull by that much.")
tf.app.flags.DEFINE_float("curriculum_bound", 0.06, "Move curriculum < this.")
tf.app.flags.DEFINE_float("dropout", 0.15, "Dropout that much.")
tf.app.flags.DEFINE_float("grad_noise_scale", 1.0, "Gradient noise scale.")
tf.app.flags.DEFINE_integer("batch_size", 64, "Batch size.")
tf.app.flags.DEFINE_integer("low_batch_size", 16, "Low batch size.")
tf.app.flags.DEFINE_integer("steps_per_checkpoint", 200, "Steps per epoch.")
tf.app.flags.DEFINE_integer("nmaps", 24, "Number of floats in each cell.")
tf.app.flags.DEFINE_integer("niclass", 14, "Number of classes (0 is padding).")
tf.app.flags.DEFINE_integer("noclass", 14, "Number of classes (0 is padding).")
tf.app.flags.DEFINE_integer("train_data_size", 5000, "Training examples/len.")
tf.app.flags.DEFINE_integer("max_length", 41, "Maximum length.")
tf.app.flags.DEFINE_integer("rx_step", 6, "Relax that many recursive steps.")
tf.app.flags.DEFINE_integer("random_seed", 125459, "Random seed.")
tf.app.flags.DEFINE_integer("nconvs", 2, "How many convolutions / 1 step.")
tf.app.flags.DEFINE_integer("kw", 3, "Kernel width.")
tf.app.flags.DEFINE_integer("kh", 3, "Kernel height.")
tf.app.flags.DEFINE_integer("height", 4, "Height.")
tf.app.flags.DEFINE_integer("forward_max", 401, "Maximum forward length.")
tf.app.flags.DEFINE_integer("jobid", -1, "Task id when running on borg.")
tf.app.flags.DEFINE_integer("nprint", 0, "How many test examples to print out.")
tf.app.flags.DEFINE_integer("mode", 0, "Mode: 0-train other-decode.")
tf.app.flags.DEFINE_string("task", "rev", "Which task are we learning?")
tf.app.flags.DEFINE_string("train_dir", "/tmp/", "Directory to store models.")
FLAGS = tf.app.flags.FLAGS
EXTRA_EVAL = 12
def initialize(sess):
"""Initialize data and model."""
if FLAGS.jobid >= 0:
data.log_filename = os.path.join(FLAGS.train_dir, "log%d" % FLAGS.jobid)
data.print_out("NN ", newline=False)
# Set random seed.
seed = FLAGS.random_seed + max(0, FLAGS.jobid)
tf.set_random_seed(seed)
random.seed(seed)
np.random.seed(seed)
# Check data sizes.
data.forward_max = max(FLAGS.forward_max, data.bins[-1])
assert data.bins
min_length = 3
max_length = min(FLAGS.max_length, data.bins[-1])
assert max_length + 1 > min_length
while len(data.bins) > 1 and data.bins[-2] > max_length + EXTRA_EVAL:
data.bins = data.bins[:-1]
assert data.bins[0] > FLAGS.rx_step
nclass = min(FLAGS.niclass, FLAGS.noclass)
data_size = FLAGS.train_data_size if FLAGS.mode == 0 else 1000
# Initialize data for each task.
tasks = FLAGS.task.split("-")
for t in tasks:
for l in xrange(max_length + EXTRA_EVAL - 1):
data.init_data(t, l, data_size, nclass)
data.init_data(t, data.bins[-2], data_size, nclass)
data.init_data(t, data.bins[-1], data_size, nclass)
end_size = 4 * 1024 if FLAGS.mode > 0 else 1024
data.init_data(t, data.forward_max, end_size, nclass)
# Print out parameters.
curriculum = FLAGS.curriculum_bound
msg1 = ("layers %d kw %d h %d kh %d relax %d batch %d noise %.2f task %s"
% (FLAGS.nconvs, FLAGS.kw, FLAGS.height, FLAGS.kh, FLAGS.rx_step,
FLAGS.batch_size, FLAGS.grad_noise_scale, FLAGS.task))
msg2 = "data %d %s" % (FLAGS.train_data_size, msg1)
msg3 = ("cut %.2f pull %.3f lr %.2f iw %.2f cr %.2f nm %d d%.4f gn %.2f %s" %
(FLAGS.cutoff, FLAGS.pull_incr, FLAGS.lr, FLAGS.init_weight,
curriculum, FLAGS.nmaps, FLAGS.dropout, FLAGS.max_grad_norm, msg2))
data.print_out(msg3)
# Create checkpoint directory if it does not exist.
checkpoint_dir = os.path.join(FLAGS.train_dir, "neural_gpu%s"
% ("" if FLAGS.jobid < 0 else str(FLAGS.jobid)))
if not gfile.IsDirectory(checkpoint_dir):
data.print_out("Creating checkpoint directory %s." % checkpoint_dir)
gfile.MkDir(checkpoint_dir)
# Create model and initialize it.
tf.get_variable_scope().set_initializer(
tf.uniform_unit_scaling_initializer(factor=1.8 * FLAGS.init_weight))
model = neural_gpu.NeuralGPU(
FLAGS.nmaps, FLAGS.nmaps, FLAGS.niclass, FLAGS.noclass, FLAGS.dropout,
FLAGS.rx_step, FLAGS.max_grad_norm, FLAGS.cutoff, FLAGS.nconvs,
FLAGS.kw, FLAGS.kh, FLAGS.height, FLAGS.mode, FLAGS.lr,
FLAGS.pull, FLAGS.pull_incr, min_length + 3)
data.print_out("Created model.")
sess.run(tf.initialize_all_variables())
data.print_out("Initialized variables.")
# Load model from parameters if a checkpoint exists.
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and gfile.Exists(ckpt.model_checkpoint_path):
data.print_out("Reading model parameters from %s"
% ckpt.model_checkpoint_path)
model.saver.restore(sess, ckpt.model_checkpoint_path)
# Return the model and needed variables.
return (model, min_length, max_length, checkpoint_dir, curriculum)
def single_test(l, model, sess, task, nprint, batch_size, print_out=True,
offset=None):
"""Test model on test data of length l using the given session."""
inpt, target = data.get_batch(l, batch_size, False, task, offset)
_, res, _, steps = model.step(sess, inpt, target, False)
errors, total, seq_err = data.accuracy(inpt, res, target, batch_size, nprint)
seq_err = float(seq_err) / batch_size
if total > 0:
errors = float(errors) / total
if print_out:
data.print_out(" %s len %d errors %.2f sequence-errors %.2f"
% (task, l, 100*errors, 100*seq_err))
return errors, seq_err, (steps, inpt, [np.argmax(o, axis=1) for o in res])
def multi_test(l, model, sess, task, nprint, batch_size, offset=None):
"""Run multiple tests at lower batch size to save memory."""
errors, seq_err = 0.0, 0.0
to_print = nprint
low_batch = FLAGS.low_batch_size
low_batch = min(low_batch, batch_size)
for mstep in xrange(batch_size / low_batch):
cur_offset = None if offset is None else offset + mstep * low_batch
err, sq_err, _ = single_test(l, model, sess, task, to_print, low_batch,
False, cur_offset)
to_print = max(0, to_print - low_batch)
errors += err
seq_err += sq_err
if FLAGS.mode > 0:
cur_errors = float(low_batch * errors) / ((mstep+1) * low_batch)
cur_seq_err = float(low_batch * seq_err) / ((mstep+1) * low_batch)
data.print_out(" %s multitest current errors %.2f sequence-errors %.2f"
% (task, 100*cur_errors, 100*cur_seq_err))
errors = float(low_batch) * float(errors) / batch_size
seq_err = float(low_batch) * float(seq_err) / batch_size
data.print_out(" %s len %d errors %.2f sequence-errors %.2f"
% (task, l, 100*errors, 100*seq_err))
return errors, seq_err
def train():
"""Train the model."""
batch_size = FLAGS.batch_size
tasks = FLAGS.task.split("-")
with tf.Session() as sess:
model, min_length, max_length, checkpoint_dir, curriculum = initialize(sess)
max_cur_length = min(min_length + 3, max_length)
prev_acc_perp = [1000000 for _ in xrange(3)]
prev_seq_err = 1.0
# Main traning loop.
while True:
global_step, pull, max_cur_length, learning_rate = sess.run(
[model.global_step, model.pull, model.cur_length, model.lr])
acc_loss, acc_total, acc_errors, acc_seq_err = 0.0, 0, 0, 0
acc_grad_norm, step_count, step_time = 0.0, 0, 0.0
for _ in xrange(FLAGS.steps_per_checkpoint):
global_step += 1
task = random.choice(tasks)
# Select the length for curriculum learning.
l = np.random.randint(max_cur_length - min_length + 1) + min_length
# Prefer longer stuff 60% of time.
if np.random.randint(100) < 60:
l1 = np.random.randint(max_cur_length - min_length+1) + min_length
l = max(l, l1)
# Mixed curriculum learning: in 25% of cases go to any larger length.
if np.random.randint(100) < 25:
l1 = np.random.randint(max_length - min_length + 1) + min_length
l = max(l, l1)
# Run a step and time it.
start_time = time.time()
inp, target = data.get_batch(l, batch_size, True, task)
noise_param = math.sqrt(math.pow(global_step, -0.55) *
(20 * prev_seq_err)) * FLAGS.grad_noise_scale
loss, res, gnorm, _ = model.step(sess, inp, target, True, noise_param)
step_time += time.time() - start_time
acc_grad_norm += float(gnorm)
# Accumulate statistics only if we did not exceed curriculum length.
if l < max_cur_length + 1:
step_count += 1
acc_loss += loss
errors, total, seq_err = data.accuracy(inp, res, target,
batch_size, 0)
acc_total += total
acc_errors += errors
acc_seq_err += seq_err
# Normalize and print out accumulated statistics.
acc_loss /= step_count
step_time /= FLAGS.steps_per_checkpoint
acc_seq_err = float(acc_seq_err) / (step_count * batch_size)
prev_seq_err = acc_seq_err
acc_errors = float(acc_errors) / acc_total if acc_total > 0 else 1.0
msg1 = "step %d step-time %.2f" % (global_step, step_time)
msg2 = "lr %.8f pull %.3f" % (learning_rate, pull)
msg3 = ("%s %s grad-norm %.8f"
% (msg1, msg2, acc_grad_norm / FLAGS.steps_per_checkpoint))
data.print_out("%s len %d ppx %.8f errors %.2f sequence-errors %.2f" %
(msg3, max_cur_length, data.safe_exp(acc_loss),
100*acc_errors, 100*acc_seq_err))
# If errors are below the curriculum threshold, move curriculum forward.
if curriculum > acc_seq_err:
# Increase current length (until the next with training data).
do_incr = True
while do_incr and max_cur_length < max_length:
sess.run(model.cur_length_incr_op)
for t in tasks:
if data.train_set[t]: do_incr = False
# Forget last perplexities if we're not yet at the end.
if max_cur_length < max_length:
prev_acc_perp.append(1000000)
# Either increase pull or, if it's large, average parameters.
if pull < 1:
sess.run(model.pull_incr_op)
else:
data.print_out(" Averaging parameters.")
sess.run([model.avg_op, model.lr_decay_op])
# Lower learning rate if we're worse than the last 3 checkpoints.
acc_perp = data.safe_exp(acc_loss)
if acc_perp > max(prev_acc_perp[-3:]):
sess.run(model.lr_decay_op)
prev_acc_perp.append(acc_perp)
# Save checkpoint.
checkpoint_path = os.path.join(checkpoint_dir, "neural_gpu.ckpt")
model.saver.save(sess, checkpoint_path,
global_step=model.global_step)
# Run evaluation.
bound = data.bins[-1] + 1
for t in tasks:
l = min_length
while l < max_length + EXTRA_EVAL and l < bound:
_, seq_err, _ = single_test(l, model, sess, t,
FLAGS.nprint, batch_size)
l += 1
while l < bound + 1 and not data.test_set[t][l]:
l += 1
if seq_err < 0.5: # Run larger test if we're good enough.
_, seq_err = multi_test(data.forward_max, model, sess, t,
FLAGS.nprint, batch_size * 4)
if seq_err < 0.01: # Super-large test on 1-task large-forward models.
if data.forward_max > 4000 and len(tasks) == 1:
multi_test(data.forward_max, model, sess, tasks[0], FLAGS.nprint,
batch_size * 16, 0)
def animate(l, test_data, anim_size):
"""Create animation for the given data (hacky matplotlib use)."""
xf = 12 # Extra frames to slow down at start and end.
fps = 2 # Frames per step.
# Make the figure.
fig = plt.figure(figsize=(16, 9), facecolor="white")
ax = fig.add_axes([0, 0, 1, 1], frameon=False, zorder=2)
ax.set_xticks([i * 24-0.5 for i in xrange(4)])
ax.set_xticklabels([])
ax.set_yticks([i - 0.5 for i in xrange(l+1)])
ax.grid(which="major", axis="both", linestyle="-", color="black")
# We need text fields.
text_fields = []
text_size = 24*32/l
for y in xrange(l):
text_fields.append(ax.text(
11.25, y + 0.15, "", color="g", ha="center", va="center",
bbox={"facecolor": "b", "alpha": 0.01, "pad": 24 * text_size},
size=text_size - (4 * 32 / l), animated=True))
im = ax.imshow(np.zeros_like(test_data[0][0][0]), vmin=-1.0,
vmax=1.0, cmap="gray", aspect="auto", origin="upper",
interpolation="none", animated=True)
im.set_zorder(1)
# Main animation step.
def animation_update(frame_no, test_data, xf, im, text_fields):
"""Update an animation frame."""
steps, inpt, out_raw = test_data
length = len(steps)
batch = frame_no / (fps * (l+4*xf))
index = int((frame_no % (fps * (l+4*xf))) / fps)
# Cut output after first padding.
out = [out_raw[i][batch] for i in xrange(len(text_fields))]
if 0 in out:
i = out.index(0)
out = out[0:i] + [0 for _ in xrange(len(out) - i)]
# Show the state after the first frames.
if index >= 2*xf:
im.set_array(steps[min(length - 1, index - 2*xf)][batch])
for i, t in enumerate(text_fields):
if index - 2*xf < length:
t.set_text("")
else:
t.set_text(data.to_symbol(out[i]))
else:
for i, t in enumerate(text_fields):
t.set_text(data.to_symbol(inpt[i][batch]) if index < xf else "")
if index < xf:
im.set_array(np.zeros_like(steps[0][0]))
else:
im.set_array(steps[0][batch])
return im,
# Create the animation and save to mp4.
animation = anim.FuncAnimation(
fig, animation_update, blit=True, frames=(l+4*xf)*anim_size*fps,
interval=500/fps, fargs=(test_data, xf, im, text_fields))
animation.save("/tmp/neural_gpu.mp4", writer="mencoder", fps=4*fps, dpi=3*80)
def evaluate():
"""Evaluate an existing model."""
batch_size = FLAGS.batch_size
tasks = FLAGS.task.split("-")
with tf.Session() as sess:
model, min_length, max_length, _, _ = initialize(sess)
bound = data.bins[-1] + 1
for t in tasks:
l = min_length
while l < max_length + EXTRA_EVAL and l < bound:
_, seq_err, _ = single_test(l, model, sess, t, FLAGS.nprint, batch_size)
l += 1
while l < bound + 1 and not data.test_set[t][l]:
l += 1
# Animate.
anim_size = 2
_, _, test_data = single_test(l, model, sess, t, 0, anim_size)
animate(l, test_data, anim_size)
# More tests.
_, seq_err = multi_test(data.forward_max, model, sess, t, FLAGS.nprint,
batch_size * 4)
if seq_err < 0.01: # Super-test if we're very good and in large-test mode.
if data.forward_max > 4000 and len(tasks) == 1:
multi_test(data.forward_max, model, sess, tasks[0], FLAGS.nprint,
batch_size * 64, 0)
def interactive():
"""Interactively probe an existing model."""
with tf.Session() as sess:
model, _, _, _, _ = initialize(sess)
sys.stdout.write("Input to Neural GPU, e.g., 0 1. Use -1 for PAD.\n")
sys.stdout.write("> ")
sys.stdout.flush()
inpt = sys.stdin.readline()
while inpt:
ids = [data.to_id(s) for s in inpt.strip().split()]
inpt, target = data.get_batch(len(ids), 1, False, "",
preset=(ids, [0 for _ in ids]))
_, res, _, _ = model.step(sess, inpt, target, False)
res = [np.argmax(o, axis=1) for o in res]
res = [o for o in res[:len(ids)] if o > 0]
print " " + " ".join([data.to_symbol(output[0]) for output in res])
sys.stdout.write("> ")
sys.stdout.flush()
inpt = sys.stdin.readline()
def main(_):
if FLAGS.mode == 0:
train()
elif FLAGS.mode == 1:
evaluate()
else:
interactive()
if __name__ == "__main__":
tf.app.run()