-
Notifications
You must be signed in to change notification settings - Fork 1
/
multi-genre-hp.py
104 lines (86 loc) · 3.48 KB
/
multi-genre-hp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import argparse
import os
import cv2
import librosa
import numpy as np
import soundfile as sf
import torch
from tqdm import tqdm
from lib import dataset
from lib import nets
from lib import spec_utils
def main():
p = argparse.ArgumentParser()
p.add_argument('--gpu', '-g', type=int, default=-1)
p.add_argument('--model', '-m', type=str, default='/content/drive/My Drive/vocal-remover/models/MultiGenreModelHP.pth')
p.add_argument('--input', '-i', required=True)
p.add_argument('--sr', '-r', type=int, default=44100)
p.add_argument('--hop_length', '-l', type=int, default=1024)
p.add_argument('--window_size', '-w', type=int, default=512)
p.add_argument('--out_mask', '-M', action='store_true')
p.add_argument('--postprocess', '-p', action='store_true')
args = p.parse_args()
print('loading model...', end=' ')
device = torch.device('cpu')
model = nets.CascadedASPPNet()
model.load_state_dict(torch.load(args.model, map_location=device))
if torch.cuda.is_available() and args.gpu >= 0:
device = torch.device('cuda:{}'.format(args.gpu))
model.to(device)
print('done')
print('loading wave source...', end=' ')
X, sr = librosa.load(
args.input, args.sr, False, dtype=np.float32, res_type='kaiser_fast')
print('done')
print('stft of wave source...', end=' ')
X = spec_utils.calc_spec(X, args.hop_length)
X, phase = np.abs(X), np.exp(1.j * np.angle(X))
coeff = X.max()
X /= coeff
print('done')
offset = model.offset
l, r, roi_size = dataset.make_padding(X.shape[2], args.window_size, offset)
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
X_roll = np.roll(X_pad, roi_size // 2, axis=2)
model.eval()
with torch.no_grad():
masks = []
masks_roll = []
for i in tqdm(range(int(np.ceil(X.shape[2] / roi_size)))):
start = i * roi_size
X_window = torch.from_numpy(np.asarray([
X_pad[:, :, start:start + args.window_size],
X_roll[:, :, start:start + args.window_size]
])).to(device)
pred = model.predict(X_window)
pred = pred.detach().cpu().numpy()
masks.append(pred[0])
masks_roll.append(pred[1])
mask = np.concatenate(masks, axis=2)[:, :, :X.shape[2]]
mask_roll = np.concatenate(masks_roll, axis=2)[:, :, :X.shape[2]]
mask = (mask + np.roll(mask_roll, -roi_size // 2, axis=2)) / 2
if args.postprocess:
vocal = X * (1 - mask) * coeff
mask = spec_utils.mask_uninformative(mask, vocal)
inst = X * mask * coeff
vocal = X * (1 - mask) * coeff
basename = os.path.splitext(os.path.basename(args.input))[0]
print('inverse stft of instruments...', end=' ')
wav = spec_utils.spec_to_wav(inst, phase, args.hop_length)
print('done')
sf.write('{}_Instruments.wav'.format(basename), wav.T, sr)
print('inverse stft of vocals...', end=' ')
wav = spec_utils.spec_to_wav(vocal, phase, args.hop_length)
print('done')
sf.write('{}_Vocals.wav'.format(basename), wav.T, sr)
if args.out_mask:
norm_mask = np.uint8((1 - mask) * 255).transpose(1, 2, 0)
norm_mask = np.concatenate([
np.max(norm_mask, axis=2, keepdims=True),
norm_mask
], axis=2)[::-1]
_, bin_mask = cv2.imencode('.png', norm_mask)
with open('{}_Mask.png'.format(basename), mode='wb') as f:
bin_mask.tofile(f)
if __name__ == '__main__':
main()