From 90678e7563535865348c68799279e08fd5645a02 Mon Sep 17 00:00:00 2001 From: Vladimir Rozic Date: Fri, 15 Sep 2023 13:27:24 +0100 Subject: [PATCH] [tvla] Add compute_leakage_general At the moment aes specific leakage is computed in the function compute_leakage_aes(), while leakage for general TVLA is computed directly in run_tvla(). This commit factors out this computation into a separate function. This is also necessary because we plan to add more functions that will need to call compute_leakage. Signed-off-by: Vladimir Rozic --- cw/tvla.py | 59 +++++++++++++++++++++++++++++++++++++++--------------- 1 file changed, 43 insertions(+), 16 deletions(-) diff --git a/cw/tvla.py b/cw/tvla.py index 77c0e831..d6c469fb 100755 --- a/cw/tvla.py +++ b/cw/tvla.py @@ -230,6 +230,47 @@ def compute_leakage_aes(keys, plaintexts, leakage_model = 'HAMMING_WEIGHT'): return leakage +def find_fixed_key(keys): + """ + Finds a fixed key. + + In a fixed-vs-random analysis, only fixed_key will repeat multiple times, + this will not necesserily be the first key on the list. + This function looks at the input list of keys and finds the first one that + is repeated multiple times. + """ + + for i_key in range(len(keys)): + fixed_key = keys[i_key] + num_hits = 0 + for i in range(len(keys)): + num_hits += np.array_equal(fixed_key, keys[i]) + if num_hits > 1: + break + + # If no key repeats, then the fixed key cannot be identified. + assert num_hits > 1, "Cannot identify fixed key. Try using a longer list." + + return fixed_key + + +def compute_leakage_general(keys, fixed_key): + """ + Computes leakage for TVLA fixed-vs-random general attaks. + + Output "leakage" shows whether a given trace belongs to the fixed or random + group. + leakage[i] = 1 - trace i belonges to the fixed group + leakage[i] = 0 - trace i belonges to the random group + """ + + leakage = np.zeros((len(keys)), dtype=np.uint8) + for i in range(len(keys)): + leakage[i] = np.array_equal(fixed_key, keys[i]) + + return leakage + + @app.command() def run_tvla(ctx: typer.Context): """Run TVLA described in "Fast Leakage Assessment".""" @@ -527,17 +568,6 @@ def run_tvla(ctx: typer.Context): else: keys_nparrays.append(np.frombuffer(project.keys[i], dtype=np.uint8)) - # In addition, for some existing trace sets the fixed key is used for the - # second instead of the first trace. For compatibility, compare a couple of - # keys and then select the fixed one. Eventually, we can drop this. - for i_key in range(10): - fixed_key = keys_nparrays[i_key] - num_hits = 0 - for i in range(10): - num_hits += np.array_equal(fixed_key, keys_nparrays[i]) - if num_hits > 1: - break - # Select the correct slice of keys for each step. keys[:] = keys_nparrays[trace_start:trace_end + 1] @@ -571,11 +601,8 @@ def run_tvla(ctx: typer.Context): assert num_traces == leakage.shape[2] else: log.info("Computing Leakage") - # We do general fixed-vs-random TVLA. The "leakage" is indicating whether a trace - # belongs to the fixed (1) or random (0) group. - leakage = np.zeros((num_traces), dtype=np.uint8) - for i in range(num_traces): - leakage[i] = np.array_equal(fixed_key, keys[i]) + # We identify the fixed key by looking at the first 20 keys in the project. + leakage = compute_leakage_general(keys, find_fixed_key(keys_nparrays[0:20])) # Uncomment the function call below for debugging e.g. when the t-test results aren't # centered around 0.