diff --git a/notebooks/RAGoon_SimilaritySearch_cookbook.ipynb b/notebooks/RAGoon_SimilaritySearch_cookbook.ipynb
new file mode 100644
index 0000000..c614580
--- /dev/null
+++ b/notebooks/RAGoon_SimilaritySearch_cookbook.ipynb
@@ -0,0 +1,6060 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# RAGoon SimilaritySearch cookbook ⚡\n",
+ "[![Python](https://img.shields.io/pypi/pyversions/tensorflow.svg)](https://badge.fury.io/py/tensorflow) [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) ![Maintainer](https://img.shields.io/badge/maintainer-@louisbrulenaudet-blue)\n",
+ "[![GitHub](https://img.shields.io/badge/GitHub-Project-blue?logo=github)](https://github.com/louisbrulenaudet/ragoon)\n",
+ "\n",
+ "![Plot](https://github.com/louisbrulenaudet/ragoon/blob/main/thumbnail.png?raw=true)\n",
+ "\n",
+ "RAGoon is a set of NLP utilities for multi-model embedding production, high-dimensional vector visualization, and aims to improve language model performance by providing contextually relevant information through search-based querying, web scraping and data augmentation techniques.\n",
+ "\n",
+ "In this notebook, you will learn how to create and search document in a corpus using scalar (int8) rescoring.\n",
+ "\n",
+ "## Quick install\n",
+ "The reference page for RAGoon is available on the official page of PyPI: [RAGoon](https://pypi.org/project/ragoon/).\n",
+ "\n",
+ "```python\n",
+ "pip install ragoon\n",
+ "```\n",
+ "\n",
+ "## Citing this project\n",
+ "If you use this code in your research, please use the following BibTeX entry.\n",
+ "\n",
+ "```BibTeX\n",
+ "@misc{louisbrulenaudet2024,\n",
+ "\tauthor = {Louis Brulé Naudet},\n",
+ "\ttitle = {RAGoon : High level library for batched embeddings generation, blazingly-fast web-based RAG and quantitized indexes processing},\n",
+ "\thowpublished = {\\url{https://github.com/louisbrulenaudet/ragoon}},\n",
+ "\tyear = {2024}\n",
+ "}\n",
+ "```\n",
+ "\n",
+ "## Feedback\n",
+ "If you have any feedback, please reach out at [louisbrulenaudet@icloud.com](mailto:louisbrulenaudet@icloud.com).\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "E1qMPnLpqcr3"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Installation\n",
+ "\n",
+ "The RAGoon project leverages a variety of libraries to provide robust functionality for tasks such as embeddings generation, retrieval-augmented generation (RAG), and web-based processing. Below is an overview of some key dependencies:\n",
+ "\n",
+ "- `transformers`: This library from Hugging Face is esential for working with state-of-the-art language models, enabling the project to perform tasks like text generation and model inference.\n",
+ "- `torch`: PyTorch is used for deep learning operations, particularly for model training and inference. It is a fundamental component for handling neural networks and tensor computations.\n",
+ "- `sentence_transformers`: This library simplifies the generation of dense vector representations (embeddings) from text, which is crucial for tasks like semantic search and information retrieval.\n",
+ "- `faiss_cpu`: FAISS is a powerful library for efficient similarity search, used in RAGoon to handle large-scale indexing and retrieval tasks with high performance.\n",
+ "- `httpx` and `beautifulsoup4`: These libraries are used for web scraping and making HTTP requests, enabling the project to fetch and process data from web sources efficiently.\n",
+ "- `openai`: This library connects to OpenAI's APIs, allowing integration with models like GPT for advanced text generation capabilities.\n",
+ "- `huggingface_hub`: Essential for interacting with Hugging Face’s model repository, enabling easy access to pre-trained models and datasets.\n",
+ "\n",
+ "These dependencies work together to empower RAGoon with advanced capabilities in natural language processing, machine learning, and web data processing, making it a versatile tool for developers and researchers in AI."
+ ],
+ "metadata": {
+ "id": "-UbYh3VCrikh"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "u4Bq23-p34KP",
+ "outputId": "0f8edae4-fb9f-4faa-a7a9-b93a5ca0233b"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Collecting ragoon\n",
+ " Downloading ragoon-0.0.8-py3-none-any.whl.metadata (7.7 kB)\n",
+ "Requirement already satisfied: beautifulsoup4==4.12.3 in /usr/local/lib/python3.10/dist-packages (from ragoon) (4.12.3)\n",
+ "Collecting datasets==2.20.0 (from ragoon)\n",
+ " Downloading datasets-2.20.0-py3-none-any.whl.metadata (19 kB)\n",
+ "Collecting faiss-cpu==1.8.0 (from ragoon)\n",
+ " Downloading faiss_cpu-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.6 kB)\n",
+ "Collecting google-api-python-client==2.126.0 (from ragoon)\n",
+ " Downloading google_api_python_client-2.126.0-py2.py3-none-any.whl.metadata (6.7 kB)\n",
+ "Collecting groq==0.9.0 (from ragoon)\n",
+ " Downloading groq-0.9.0-py3-none-any.whl.metadata (13 kB)\n",
+ "Collecting httpx==0.27.0 (from ragoon)\n",
+ " Downloading httpx-0.27.0-py3-none-any.whl.metadata (7.2 kB)\n",
+ "Collecting huggingface-hub==0.24.2 (from ragoon)\n",
+ " Downloading huggingface_hub-0.24.2-py3-none-any.whl.metadata (13 kB)\n",
+ "Collecting myst-parser==3.0.1 (from ragoon)\n",
+ " Downloading myst_parser-3.0.1-py3-none-any.whl.metadata (5.5 kB)\n",
+ "Requirement already satisfied: numpy<2 in /usr/local/lib/python3.10/dist-packages (from ragoon) (1.26.4)\n",
+ "Collecting numpydoc==1.7.0 (from ragoon)\n",
+ " Downloading numpydoc-1.7.0-py3-none-any.whl.metadata (4.2 kB)\n",
+ "Collecting openai==1.37.1 (from ragoon)\n",
+ " Downloading openai-1.37.1-py3-none-any.whl.metadata (22 kB)\n",
+ "Collecting overload==1.1 (from ragoon)\n",
+ " Downloading overload-1.1.tar.gz (4.6 kB)\n",
+ " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+ "Collecting plotly==5.23.0 (from ragoon)\n",
+ " Downloading plotly-5.23.0-py3-none-any.whl.metadata (7.3 kB)\n",
+ "Collecting pydata-sphinx-theme==0.15.4 (from ragoon)\n",
+ " Downloading pydata_sphinx_theme-0.15.4-py3-none-any.whl.metadata (7.5 kB)\n",
+ "Collecting pytest==8.3.2 (from ragoon)\n",
+ " Downloading pytest-8.3.2-py3-none-any.whl.metadata (7.5 kB)\n",
+ "Collecting scikit-learn==1.5.1 (from ragoon)\n",
+ " Downloading scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n",
+ "Collecting sentence-transformers==3.0.1 (from ragoon)\n",
+ " Downloading sentence_transformers-3.0.1-py3-none-any.whl.metadata (10 kB)\n",
+ "Collecting sphinx==7.4.7 (from ragoon)\n",
+ " Downloading sphinx-7.4.7-py3-none-any.whl.metadata (6.1 kB)\n",
+ "Collecting sphinx-book-theme==1.1.3 (from ragoon)\n",
+ " Downloading sphinx_book_theme-1.1.3-py3-none-any.whl.metadata (5.7 kB)\n",
+ "Requirement already satisfied: torch==2.3.1 in /usr/local/lib/python3.10/dist-packages (from ragoon) (2.3.1+cu121)\n",
+ "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (from ragoon) (4.42.4)\n",
+ "Collecting tqdm==4.66.4 (from ragoon)\n",
+ " Downloading tqdm-4.66.4-py3-none-any.whl.metadata (57 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.6/57.6 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hCollecting umap==0.1.1 (from ragoon)\n",
+ " Downloading umap-0.1.1.tar.gz (3.2 kB)\n",
+ " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+ "Collecting umap-learn==0.5.6 (from ragoon)\n",
+ " Downloading umap_learn-0.5.6-py3-none-any.whl.metadata (21 kB)\n",
+ "Collecting usearch==2.12.0 (from ragoon)\n",
+ " Downloading usearch-2.12.0-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (28 kB)\n",
+ "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4==4.12.3->ragoon) (2.5)\n",
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets==2.20.0->ragoon) (3.15.4)\n",
+ "Collecting pyarrow>=15.0.0 (from datasets==2.20.0->ragoon)\n",
+ " Downloading pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (3.3 kB)\n",
+ "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets==2.20.0->ragoon) (0.6)\n",
+ "Collecting dill<0.3.9,>=0.3.0 (from datasets==2.20.0->ragoon)\n",
+ " Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n",
+ "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets==2.20.0->ragoon) (2.1.4)\n",
+ "Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.10/dist-packages (from datasets==2.20.0->ragoon) (2.32.3)\n",
+ "Collecting xxhash (from datasets==2.20.0->ragoon)\n",
+ " Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n",
+ "Collecting multiprocess (from datasets==2.20.0->ragoon)\n",
+ " Downloading multiprocess-0.70.16-py310-none-any.whl.metadata (7.2 kB)\n",
+ "Collecting fsspec<=2024.5.0,>=2023.1.0 (from fsspec[http]<=2024.5.0,>=2023.1.0->datasets==2.20.0->ragoon)\n",
+ " Downloading fsspec-2024.5.0-py3-none-any.whl.metadata (11 kB)\n",
+ "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets==2.20.0->ragoon) (3.10.1)\n",
+ "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets==2.20.0->ragoon) (24.1)\n",
+ "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets==2.20.0->ragoon) (6.0.2)\n",
+ "Requirement already satisfied: httplib2<1.dev0,>=0.19.0 in /usr/local/lib/python3.10/dist-packages (from google-api-python-client==2.126.0->ragoon) (0.22.0)\n",
+ "Requirement already satisfied: google-auth!=2.24.0,!=2.25.0,<3.0.0.dev0,>=1.32.0 in /usr/local/lib/python3.10/dist-packages (from google-api-python-client==2.126.0->ragoon) (2.27.0)\n",
+ "Requirement already satisfied: google-auth-httplib2<1.0.0,>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from google-api-python-client==2.126.0->ragoon) (0.2.0)\n",
+ "Requirement already satisfied: google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0.dev0,>=1.31.5 in /usr/local/lib/python3.10/dist-packages (from google-api-python-client==2.126.0->ragoon) (2.19.1)\n",
+ "Requirement already satisfied: uritemplate<5,>=3.0.1 in /usr/local/lib/python3.10/dist-packages (from google-api-python-client==2.126.0->ragoon) (4.1.1)\n",
+ "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from groq==0.9.0->ragoon) (3.7.1)\n",
+ "Requirement already satisfied: distro<2,>=1.7.0 in /usr/lib/python3/dist-packages (from groq==0.9.0->ragoon) (1.7.0)\n",
+ "Requirement already satisfied: pydantic<3,>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from groq==0.9.0->ragoon) (2.8.2)\n",
+ "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from groq==0.9.0->ragoon) (1.3.1)\n",
+ "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from groq==0.9.0->ragoon) (4.12.2)\n",
+ "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx==0.27.0->ragoon) (2024.7.4)\n",
+ "Collecting httpcore==1.* (from httpx==0.27.0->ragoon)\n",
+ " Downloading httpcore-1.0.5-py3-none-any.whl.metadata (20 kB)\n",
+ "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx==0.27.0->ragoon) (3.7)\n",
+ "Requirement already satisfied: docutils<0.22,>=0.18 in /usr/local/lib/python3.10/dist-packages (from myst-parser==3.0.1->ragoon) (0.18.1)\n",
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from myst-parser==3.0.1->ragoon) (3.1.4)\n",
+ "Requirement already satisfied: markdown-it-py~=3.0 in /usr/local/lib/python3.10/dist-packages (from myst-parser==3.0.1->ragoon) (3.0.0)\n",
+ "Requirement already satisfied: mdit-py-plugins~=0.4 in /usr/local/lib/python3.10/dist-packages (from myst-parser==3.0.1->ragoon) (0.4.1)\n",
+ "Requirement already satisfied: tabulate>=0.8.10 in /usr/local/lib/python3.10/dist-packages (from numpydoc==1.7.0->ragoon) (0.9.0)\n",
+ "Requirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from numpydoc==1.7.0->ragoon) (2.0.1)\n",
+ "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly==5.23.0->ragoon) (9.0.0)\n",
+ "Requirement already satisfied: Babel in /usr/local/lib/python3.10/dist-packages (from pydata-sphinx-theme==0.15.4->ragoon) (2.15.0)\n",
+ "Requirement already satisfied: pygments>=2.7 in /usr/local/lib/python3.10/dist-packages (from pydata-sphinx-theme==0.15.4->ragoon) (2.16.1)\n",
+ "Collecting accessible-pygments (from pydata-sphinx-theme==0.15.4->ragoon)\n",
+ " Downloading accessible_pygments-0.0.5-py3-none-any.whl.metadata (10 kB)\n",
+ "Requirement already satisfied: iniconfig in /usr/local/lib/python3.10/dist-packages (from pytest==8.3.2->ragoon) (2.0.0)\n",
+ "Requirement already satisfied: pluggy<2,>=1.5 in /usr/local/lib/python3.10/dist-packages (from pytest==8.3.2->ragoon) (1.5.0)\n",
+ "Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /usr/local/lib/python3.10/dist-packages (from pytest==8.3.2->ragoon) (1.2.2)\n",
+ "Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn==1.5.1->ragoon) (1.13.1)\n",
+ "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn==1.5.1->ragoon) (1.4.2)\n",
+ "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn==1.5.1->ragoon) (3.5.0)\n",
+ "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from sentence-transformers==3.0.1->ragoon) (9.4.0)\n",
+ "Requirement already satisfied: sphinxcontrib-applehelp in /usr/local/lib/python3.10/dist-packages (from sphinx==7.4.7->ragoon) (2.0.0)\n",
+ "Requirement already satisfied: sphinxcontrib-devhelp in /usr/local/lib/python3.10/dist-packages (from sphinx==7.4.7->ragoon) (2.0.0)\n",
+ "Requirement already satisfied: sphinxcontrib-jsmath in /usr/local/lib/python3.10/dist-packages (from sphinx==7.4.7->ragoon) (1.0.1)\n",
+ "Requirement already satisfied: sphinxcontrib-htmlhelp>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from sphinx==7.4.7->ragoon) (2.1.0)\n",
+ "Requirement already satisfied: sphinxcontrib-serializinghtml>=1.1.9 in /usr/local/lib/python3.10/dist-packages (from sphinx==7.4.7->ragoon) (2.0.0)\n",
+ "Requirement already satisfied: sphinxcontrib-qthelp in /usr/local/lib/python3.10/dist-packages (from sphinx==7.4.7->ragoon) (2.0.0)\n",
+ "Collecting pygments>=2.7 (from pydata-sphinx-theme==0.15.4->ragoon)\n",
+ " Downloading pygments-2.18.0-py3-none-any.whl.metadata (2.5 kB)\n",
+ "Collecting docutils<0.22,>=0.18 (from myst-parser==3.0.1->ragoon)\n",
+ " Downloading docutils-0.21.2-py3-none-any.whl.metadata (2.8 kB)\n",
+ "Requirement already satisfied: snowballstemmer>=2.2 in /usr/local/lib/python3.10/dist-packages (from sphinx==7.4.7->ragoon) (2.2.0)\n",
+ "Requirement already satisfied: alabaster~=0.7.14 in /usr/local/lib/python3.10/dist-packages (from sphinx==7.4.7->ragoon) (0.7.16)\n",
+ "Requirement already satisfied: imagesize>=1.3 in /usr/local/lib/python3.10/dist-packages (from sphinx==7.4.7->ragoon) (1.4.1)\n",
+ "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch==2.3.1->ragoon) (1.13.1)\n",
+ "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch==2.3.1->ragoon) (3.3)\n",
+ "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n",
+ "Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n",
+ "Collecting nvidia-cublas-cu12==12.1.3.1 (from torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cufft-cu12==11.0.2.54 (from torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-curand-cu12==10.3.2.106 (from torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n",
+ "Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n",
+ "Collecting nvidia-nccl-cu12==2.20.5 (from torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl.metadata (1.8 kB)\n",
+ "Collecting nvidia-nvtx-cu12==12.1.105 (from torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.7 kB)\n",
+ "Requirement already satisfied: triton==2.3.1 in /usr/local/lib/python3.10/dist-packages (from torch==2.3.1->ragoon) (2.3.1)\n",
+ "Requirement already satisfied: numba>=0.51.2 in /usr/local/lib/python3.10/dist-packages (from umap-learn==0.5.6->ragoon) (0.60.0)\n",
+ "Collecting pynndescent>=0.5 (from umap-learn==0.5.6->ragoon)\n",
+ " Downloading pynndescent-0.5.13-py3-none-any.whl.metadata (6.8 kB)\n",
+ "Collecting h11<0.15,>=0.13 (from httpcore==1.*->httpx==0.27.0->ragoon)\n",
+ " Downloading h11-0.14.0-py3-none-any.whl.metadata (8.2 kB)\n",
+ "Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch==2.3.1->ragoon)\n",
+ " Using cached nvidia_nvjitlink_cu12-12.6.20-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
+ "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers->ragoon) (2024.5.15)\n",
+ "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers->ragoon) (0.4.4)\n",
+ "Requirement already satisfied: tokenizers<0.20,>=0.19 in /usr/local/lib/python3.10/dist-packages (from transformers->ragoon) (0.19.1)\n",
+ "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.20.0->ragoon) (2.3.4)\n",
+ "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.20.0->ragoon) (1.3.1)\n",
+ "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.20.0->ragoon) (24.2.0)\n",
+ "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.20.0->ragoon) (1.4.1)\n",
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.20.0->ragoon) (6.0.5)\n",
+ "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.20.0->ragoon) (1.9.4)\n",
+ "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.20.0->ragoon) (4.0.3)\n",
+ "Requirement already satisfied: googleapis-common-protos<2.0.dev0,>=1.56.2 in /usr/local/lib/python3.10/dist-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0.dev0,>=1.31.5->google-api-python-client==2.126.0->ragoon) (1.63.2)\n",
+ "Requirement already satisfied: protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<6.0.0.dev0,>=3.19.5 in /usr/local/lib/python3.10/dist-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0.dev0,>=1.31.5->google-api-python-client==2.126.0->ragoon) (3.20.3)\n",
+ "Requirement already satisfied: proto-plus<2.0.0dev,>=1.22.3 in /usr/local/lib/python3.10/dist-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0.dev0,>=1.31.5->google-api-python-client==2.126.0->ragoon) (1.24.0)\n",
+ "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth!=2.24.0,!=2.25.0,<3.0.0.dev0,>=1.32.0->google-api-python-client==2.126.0->ragoon) (5.4.0)\n",
+ "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth!=2.24.0,!=2.25.0,<3.0.0.dev0,>=1.32.0->google-api-python-client==2.126.0->ragoon) (0.4.0)\n",
+ "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth!=2.24.0,!=2.25.0,<3.0.0.dev0,>=1.32.0->google-api-python-client==2.126.0->ragoon) (4.9)\n",
+ "Requirement already satisfied: pyparsing!=3.0.0,!=3.0.1,!=3.0.2,!=3.0.3,<4,>=2.4.2 in /usr/local/lib/python3.10/dist-packages (from httplib2<1.dev0,>=0.19.0->google-api-python-client==2.126.0->ragoon) (3.1.2)\n",
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->myst-parser==3.0.1->ragoon) (2.1.5)\n",
+ "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py~=3.0->myst-parser==3.0.1->ragoon) (0.1.2)\n",
+ "Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba>=0.51.2->umap-learn==0.5.6->ragoon) (0.43.0)\n",
+ "Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1.9.0->groq==0.9.0->ragoon) (0.7.0)\n",
+ "Requirement already satisfied: pydantic-core==2.20.1 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1.9.0->groq==0.9.0->ragoon) (2.20.1)\n",
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets==2.20.0->ragoon) (3.3.2)\n",
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets==2.20.0->ragoon) (2.0.7)\n",
+ "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets==2.20.0->ragoon) (2.8.2)\n",
+ "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets==2.20.0->ragoon) (2024.1)\n",
+ "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets==2.20.0->ragoon) (2024.1)\n",
+ "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch==2.3.1->ragoon) (1.3.0)\n",
+ "Requirement already satisfied: pyasn1<0.7.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth!=2.24.0,!=2.25.0,<3.0.0.dev0,>=1.32.0->google-api-python-client==2.126.0->ragoon) (0.6.0)\n",
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->datasets==2.20.0->ragoon) (1.16.0)\n",
+ "Downloading ragoon-0.0.8-py3-none-any.whl (37 kB)\n",
+ "Downloading datasets-2.20.0-py3-none-any.whl (547 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m547.8/547.8 kB\u001b[0m \u001b[31m15.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading faiss_cpu-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.0 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m27.0/27.0 MB\u001b[0m \u001b[31m50.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading google_api_python_client-2.126.0-py2.py3-none-any.whl (12.6 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.6/12.6 MB\u001b[0m \u001b[31m73.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading groq-0.9.0-py3-none-any.whl (103 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m103.5/103.5 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading httpx-0.27.0-py3-none-any.whl (75 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m6.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading huggingface_hub-0.24.2-py3-none-any.whl (417 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m417.2/417.2 kB\u001b[0m \u001b[31m26.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading myst_parser-3.0.1-py3-none-any.whl (83 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m83.2/83.2 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading numpydoc-1.7.0-py3-none-any.whl (62 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.8/62.8 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading openai-1.37.1-py3-none-any.whl (337 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m337.0/337.0 kB\u001b[0m \u001b[31m22.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading plotly-5.23.0-py3-none-any.whl (17.3 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.3/17.3 MB\u001b[0m \u001b[31m25.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading pydata_sphinx_theme-0.15.4-py3-none-any.whl (4.6 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.6/4.6 MB\u001b[0m \u001b[31m71.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading pytest-8.3.2-py3-none-any.whl (341 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m341.8/341.8 kB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.4/13.4 MB\u001b[0m \u001b[31m68.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading sentence_transformers-3.0.1-py3-none-any.whl (227 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m227.1/227.1 kB\u001b[0m \u001b[31m16.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading sphinx-7.4.7-py3-none-any.whl (3.4 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m70.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading sphinx_book_theme-1.1.3-py3-none-any.whl (430 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m430.1/430.1 kB\u001b[0m \u001b[31m27.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading tqdm-4.66.4-py3-none-any.whl (78 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m78.3/78.3 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading umap_learn-0.5.6-py3-none-any.whl (85 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m85.7/85.7 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading usearch-2.12.0-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m54.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading httpcore-1.0.5-py3-none-any.whl (77 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hUsing cached nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n",
+ "Using cached nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n",
+ "Using cached nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n",
+ "Using cached nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n",
+ "Using cached nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n",
+ "Using cached nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n",
+ "Using cached nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n",
+ "Using cached nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n",
+ "Using cached nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n",
+ "Using cached nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl (176.2 MB)\n",
+ "Using cached nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n",
+ "Downloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m423.5 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading docutils-0.21.2-py3-none-any.whl (587 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m587.4/587.4 kB\u001b[0m \u001b[31m35.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading fsspec-2024.5.0-py3-none-any.whl (316 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m316.1/316.1 kB\u001b[0m \u001b[31m24.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (39.9 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m39.9/39.9 MB\u001b[0m \u001b[31m16.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading pygments-2.18.0-py3-none-any.whl (1.2 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m58.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading pynndescent-0.5.13-py3-none-any.whl (56 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.9/56.9 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading accessible_pygments-0.0.5-py3-none-any.whl (1.4 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m66.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m13.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m15.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading h11-0.14.0-py3-none-any.whl (58 kB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hUsing cached nvidia_nvjitlink_cu12-12.6.20-py3-none-manylinux2014_x86_64.whl (19.7 MB)\n",
+ "Building wheels for collected packages: overload, umap\n",
+ " Building wheel for overload (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+ " Created wheel for overload: filename=overload-1.1-py3-none-any.whl size=5675 sha256=bd134871ea1dd33588cb0eb38faa5141ef6e5bf1581a2df164a784a16e4f7fee\n",
+ " Stored in directory: /root/.cache/pip/wheels/c2/bd/04/b71278036f82f85e09d62b31d780f87df6f2a2dd378a185b3e\n",
+ " Building wheel for umap (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+ " Created wheel for umap: filename=umap-0.1.1-py3-none-any.whl size=3542 sha256=64a33bfe9c627bd2873973ff4d15a11bd54edb51ca0ae728bb1e2e868e4cb9ff\n",
+ " Stored in directory: /root/.cache/pip/wheels/15/f1/28/53dcf7a309118ed35d810a5f9cb995217800f3f269ab5771cb\n",
+ "Successfully built overload umap\n",
+ "Installing collected packages: umap, overload, xxhash, tqdm, pytest, pygments, pyarrow, plotly, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, h11, fsspec, faiss-cpu, docutils, dill, usearch, sphinx, scikit-learn, nvidia-cusparse-cu12, nvidia-cudnn-cu12, multiprocess, huggingface-hub, httpcore, accessible-pygments, pynndescent, pydata-sphinx-theme, nvidia-cusolver-cu12, numpydoc, myst-parser, httpx, umap-learn, sphinx-book-theme, openai, groq, google-api-python-client, datasets, sentence-transformers, ragoon\n",
+ " Attempting uninstall: tqdm\n",
+ " Found existing installation: tqdm 4.66.5\n",
+ " Uninstalling tqdm-4.66.5:\n",
+ " Successfully uninstalled tqdm-4.66.5\n",
+ " Attempting uninstall: pytest\n",
+ " Found existing installation: pytest 7.4.4\n",
+ " Uninstalling pytest-7.4.4:\n",
+ " Successfully uninstalled pytest-7.4.4\n",
+ " Attempting uninstall: pygments\n",
+ " Found existing installation: Pygments 2.16.1\n",
+ " Uninstalling Pygments-2.16.1:\n",
+ " Successfully uninstalled Pygments-2.16.1\n",
+ " Attempting uninstall: pyarrow\n",
+ " Found existing installation: pyarrow 14.0.2\n",
+ " Uninstalling pyarrow-14.0.2:\n",
+ " Successfully uninstalled pyarrow-14.0.2\n",
+ " Attempting uninstall: plotly\n",
+ " Found existing installation: plotly 5.15.0\n",
+ " Uninstalling plotly-5.15.0:\n",
+ " Successfully uninstalled plotly-5.15.0\n",
+ " Attempting uninstall: fsspec\n",
+ " Found existing installation: fsspec 2024.6.1\n",
+ " Uninstalling fsspec-2024.6.1:\n",
+ " Successfully uninstalled fsspec-2024.6.1\n",
+ " Attempting uninstall: docutils\n",
+ " Found existing installation: docutils 0.18.1\n",
+ " Uninstalling docutils-0.18.1:\n",
+ " Successfully uninstalled docutils-0.18.1\n",
+ " Attempting uninstall: sphinx\n",
+ " Found existing installation: Sphinx 5.0.2\n",
+ " Uninstalling Sphinx-5.0.2:\n",
+ " Successfully uninstalled Sphinx-5.0.2\n",
+ " Attempting uninstall: scikit-learn\n",
+ " Found existing installation: scikit-learn 1.3.2\n",
+ " Uninstalling scikit-learn-1.3.2:\n",
+ " Successfully uninstalled scikit-learn-1.3.2\n",
+ " Attempting uninstall: huggingface-hub\n",
+ " Found existing installation: huggingface-hub 0.23.5\n",
+ " Uninstalling huggingface-hub-0.23.5:\n",
+ " Successfully uninstalled huggingface-hub-0.23.5\n",
+ " Attempting uninstall: google-api-python-client\n",
+ " Found existing installation: google-api-python-client 2.137.0\n",
+ " Uninstalling google-api-python-client-2.137.0:\n",
+ " Successfully uninstalled google-api-python-client-2.137.0\n",
+ "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
+ "ipython 7.34.0 requires jedi>=0.16, which is not installed.\n",
+ "cudf-cu12 24.4.1 requires pyarrow<15.0.0a0,>=14.0.1, but you have pyarrow 17.0.0 which is incompatible.\n",
+ "gcsfs 2024.6.1 requires fsspec==2024.6.1, but you have fsspec 2024.5.0 which is incompatible.\n",
+ "ibis-framework 8.0.0 requires pyarrow<16,>=2, but you have pyarrow 17.0.0 which is incompatible.\u001b[0m\u001b[31m\n",
+ "\u001b[0mSuccessfully installed accessible-pygments-0.0.5 datasets-2.20.0 dill-0.3.8 docutils-0.21.2 faiss-cpu-1.8.0 fsspec-2024.5.0 google-api-python-client-2.126.0 groq-0.9.0 h11-0.14.0 httpcore-1.0.5 httpx-0.27.0 huggingface-hub-0.24.2 multiprocess-0.70.16 myst-parser-3.0.1 numpydoc-1.7.0 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.20.5 nvidia-nvjitlink-cu12-12.6.20 nvidia-nvtx-cu12-12.1.105 openai-1.37.1 overload-1.1 plotly-5.23.0 pyarrow-17.0.0 pydata-sphinx-theme-0.15.4 pygments-2.18.0 pynndescent-0.5.13 pytest-8.3.2 ragoon-0.0.8 scikit-learn-1.5.1 sentence-transformers-3.0.1 sphinx-7.4.7 sphinx-book-theme-1.1.3 tqdm-4.66.4 umap-0.1.1 umap-learn-0.5.6 usearch-2.12.0 xxhash-3.4.1\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip3 install ragoon polars"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "id": "r_zE8a8z4HMV"
+ },
+ "outputs": [],
+ "source": [
+ "import polars as pl\n",
+ "\n",
+ "from ragoon import (\n",
+ " dataset_loader,\n",
+ " SimilaritySearch,\n",
+ " EmbeddingsVisualizer\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Instance creation\n",
+ "\n",
+ "The `SimilaritySearch` class is instantiated with specific parameters to configure the embedding model and search infrastructure. The chosen model, `louisbrulenaudet/tsdae-lemone-mbert-base`, is likely a multilingual BERT model fine-tuned with TSDAE (Transfomer-based Denoising Auto-Encoder) on a custom dataset. This model choice suggests a focus on multilingual capabilities and improved semantic representations.\n",
+ "\n",
+ "The `cuda` device specification leverages GPU acceleration, crucial for efficient processing of large datasets. The embedding dimension of `768` is typical for BERT-based models, representing a balance between expressiveness and computational efficiency. The `ip` (inner product) metric is selected for similarity comparisons, which is computationally faster than cosine similarity when vectors are normalized. The `i8` dtype indicates 8-bit integer quantization, a technique that significantly reduces memory usage and speeds up similarity search at the cost of a small accuracy rade-off."
+ ],
+ "metadata": {
+ "id": "Sb6QMUxtMC7x"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "instance = SimilaritySearch(\n",
+ " model_name=\"louisbrulenaudet/tsdae-lemone-mbert-base\",\n",
+ " device=\"cuda\",\n",
+ " ndim=768,\n",
+ " metric=\"ip\",\n",
+ " dtype=\"i8\"\n",
+ ")"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 491,
+ "referenced_widgets": [
+ "3b0740b7c1184b11af19a2575c2028d7",
+ "ed036c7e98d34ca1b1fefb5f7d7da690",
+ "041dcd84dd8047b8bb00dcf0a8605366",
+ "6ffed718be9d47b08b0f319823627692",
+ "bd764b4c8d3a4218a51ac6cfa016b176",
+ "459b6bd8f7804c6fa2cfbbf3574fea81",
+ "310db8d9db6e4b05b3340d9ac4e6a885",
+ "454e18ed66a543e88829d0eb1c7585dd",
+ "341d5f623a4e4d97a0b02a8b1f8372fa",
+ "bf1831cf76294173ad2f4506bab90601",
+ "d840ecb454ce401b9781ca181204320f",
+ "990877dd1448431ca676da862de76e66",
+ "215f503d83524f22b534383c76bb7aa5",
+ "57d8c511f130440ab43cd26946d73484",
+ "6ad57261fbcc4033bcf3c56e01f14099",
+ "9d590a1002364797a243818665f95cea",
+ "31967af398094a5b8003a78d7cdef06a",
+ "ee1e1101bcae43f8b938b70758635e28",
+ "fcadc705920c4dc0a965eff5b1de8088",
+ "9cedabb67be046b7b0dfb7ca89c8e299",
+ "91962d7fbd814ae0b6a6e10072f621bc",
+ "910e040f53c246048d85236b525d7e95",
+ "017b2cc0c5594dc6a4624b0bec38fe73",
+ "476cac6399c142efa95e85a5b159dd20",
+ "ce8b3efd425e43158a2b55f8e47b8d56",
+ "1fe1c159c31a4f8dba9beb0c53e49bbc",
+ "f121aa8e2b4a41feb4e7966f1a697d6f",
+ "66abd6f0b54c47548f3f8074d9af2af8",
+ "8347c3e484fa43b785c2a1392d4bf1aa",
+ "5a1a0dd9fd9f4f0195f8ead413dfd1a9",
+ "ef52f1ca67554e29a478abcd91eae44f",
+ "2629efe6d2044c29a22d9736b71523f4",
+ "2c0e040a88e948a2835e07dd3fac05f0",
+ "5d298e5197c94cb183ca668444f8ca81",
+ "1f4ea0c70e9c4923b7de5e307c01fcd5",
+ "8527969d2f9d4b8da907cb8d586c27eb",
+ "a10b2bca915841479e634c16af092d00",
+ "da023e01ccb34cd6a0d63ac05c4caf0f",
+ "cc58183628524f24b2f1cbe66527cf03",
+ "77a0828fab334bf280fde83577adbc36",
+ "874f00bd481e40c0802f3b6312d1e7c1",
+ "aab5b68dd3ce4d019b582188871e937e",
+ "f51d2b0311ad4fa895f1c7c5c2c2ecee",
+ "910a5796ac244e74b3fcd189166a7279",
+ "897fb40e1b0347a089aa4cb0fab582f3",
+ "744c5ae12aac4e9faa4a4845af24e3e9",
+ "c4616271c618426cbe1043dd0ef541a5",
+ "c245609de8ea43bb88c500e484638238",
+ "60fd5071bae7484f991e1fc6aca170de",
+ "de77ef90160f4d89a01e99fab514e0bb",
+ "ceb21ab3f6ef43c68642439fa948590c",
+ "141eb847045b48f69698e36bbff54e9e",
+ "0f598dd46d844505a64a85ccb22aa462",
+ "87d22f7577a94256aeca8146b6797101",
+ "a0c1f63835ea4700b5d59de386045f82",
+ "6b07d0ea362e442fb4a9f46fa66b8155",
+ "4d8991a173e5485a966fc51a0d58222d",
+ "d57b5e6e0017437db70929616ad041d7",
+ "9bbe6c83fe2f4bb6817e3177006af255",
+ "cbcb40306ff84710983dfc47b3ed0ad0",
+ "76bd90a147dd4d3da5b7bcb1bd759b9d",
+ "a3ee7025242c48aea17ce4935c467742",
+ "4267bf1283a04abda6e7877b43d04b52",
+ "0bdddb3424f44dbe97674c45488dd4eb",
+ "8330426f6ff140b6aba7190543688c2f",
+ "0fabe9fd86344ae1928752e6b4abc883",
+ "78a210fcb03a4450b34e73b7f4dc2280",
+ "ccb12bd8b80242c38f644fc73bc4edd5",
+ "8b647e9a5eb84dada7715f764258a7df",
+ "4398e38513ae40d5a0a9399c89fd60a7",
+ "fee8560569fa4c8797ce9d25fe587bff",
+ "3ff7fe78226542c4adc84898179249a6",
+ "0c959e89a32e42d8885bb9168ab3036f",
+ "bc7a5be54a8e43fc92a49b7c812b8a48",
+ "f8af455ea779482cab33235f505fe5ef",
+ "1e2db34d262f41cabd288f1100fed025",
+ "d26d7c429d9a4e80aba1c7de6e7e64f0",
+ "558cf7b57e9c4f729d834ac6d5ef6bfe",
+ "4cf43d2ded134c06ab1df7509d226175",
+ "14e16de286304a94a75960fe47176237",
+ "c435a072016d4dc3b30e409f2410450e",
+ "b4295cdb89d14877b60eb45c913f7409",
+ "91db42f83e454d1baf20cc1e0af0e1e1",
+ "227f6358cc4a47b3b6da3001a0e3fdbf",
+ "cf4bae6c34b34d3abeaa1a77454f4097",
+ "834f4a6d80eb4c1a8a3cf6276e071553",
+ "c5d2f8d7eb8d40c8b976c43406ed0204",
+ "6848d43f27bc4ce195806fb51e741a6f",
+ "c182ee1819344032ad954b39d261e35e",
+ "b20264f18ecc4f89bdb2ad9ec3052d0f",
+ "0ab071ebac92435791261ebebca4d103",
+ "115636ffa31a4212a2bb7294733744f3",
+ "c8b243e465c74845b21ce64729bd7e34",
+ "09d7e4295da04cc68569f096f60dc0da",
+ "18a5275ac2864347ba605046e798f344",
+ "a193ba8df21d4434a83079faaace6a16",
+ "810c7730004b4d92adde4a835b9e8896",
+ "9c17c34bca294f6ab92dc2973ad831bd",
+ "9beabf1daab340ae82a12ae4ad44defd",
+ "0d52cd598ddb4f63ab68ebb3a1672936",
+ "a7378ef70c964373873ac13eb9188af7",
+ "532eeb99350e444fad7fe3f659e118cb",
+ "99f18945bfa4496badf1b6398eced269",
+ "26924bd271a34fd3b6bc4cd4ef7d0fc8",
+ "1069c57ab76349acb1df1e267836877b",
+ "0d5f036ec3d84483b88de5c312c24631",
+ "b35af0a4b0394d6ca66388187a12b9c9",
+ "fd08587944f34eb2a2e72d6ebdf11dc9",
+ "5f8560ee9dea418a85f693dd4f771a72",
+ "961a5e9e866f4a0aa772e0395d2c5cc4",
+ "9ba34593f7c449acacde80b276e47e5e",
+ "b227d4b242384297883d73e2ef4ad36b",
+ "2aa6f24c423a4c9fbae4c9e2f59cd1ef",
+ "13147575bc324653ad03fe2b764c0f30",
+ "622c32270e6548ed9514345c0c1450cb",
+ "15f0540100a44d1cada3d2f6a0e927d4",
+ "183376a937604feca5a8fe1e01e8d8e6",
+ "e192d2a4b79b45ff858d90751fc7ebea",
+ "2693cf39ba874fff92e1b5294e796ed7",
+ "a070c177e8f94802a073d9be6a3226b6",
+ "984117efb8c548ccb2debd825d89d156"
+ ]
+ },
+ "id": "DO8LihEaL9Es",
+ "outputId": "05761d16-36e5-4278-c36b-f883b46a39fd"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n",
+ "The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
+ "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
+ "You will be able to reuse this secret in all of your notebooks.\n",
+ "Please note that authentication is recommended but still optional to access public models or datasets.\n",
+ " warnings.warn(\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "modules.json: 0%| | 0.00/229 [00:00, ?B/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "3b0740b7c1184b11af19a2575c2028d7"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "config_sentence_transformers.json: 0%| | 0.00/123 [00:00, ?B/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "990877dd1448431ca676da862de76e66"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "README.md: 0%| | 0.00/6.11k [00:00, ?B/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "017b2cc0c5594dc6a4624b0bec38fe73"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "sentence_bert_config.json: 0%| | 0.00/53.0 [00:00, ?B/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "5d298e5197c94cb183ca668444f8ca81"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "config.json: 0%| | 0.00/828 [00:00, ?B/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "897fb40e1b0347a089aa4cb0fab582f3"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "model.safetensors: 0%| | 0.00/669M [00:00, ?B/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "6b07d0ea362e442fb4a9f46fa66b8155"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "tokenizer_config.json: 0%| | 0.00/1.19k [00:00, ?B/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "78a210fcb03a4450b34e73b7f4dc2280"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "vocab.txt: 0%| | 0.00/872k [00:00, ?B/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "558cf7b57e9c4f729d834ac6d5ef6bfe"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "tokenizer.json: 0%| | 0.00/2.56M [00:00, ?B/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "c182ee1819344032ad954b39d261e35e"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "special_tokens_map.json: 0%| | 0.00/125 [00:00, ?B/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "0d52cd598ddb4f63ab68ebb3a1672936"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "1_Pooling/config.json: 0%| | 0.00/190 [00:00, ?B/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "9ba34593f7c449acacde80b276e47e5e"
+ }
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Dataset download and embeddings generation\n",
+ "\n",
+ "The encode method transforms raw text into dense vector representations. This process involves tokenization, where text is split into subword units, followed by passing these tokens through the neural network layers of the SentenceTransformer model. The resulting embeddings capture semantic information in a high-dimensional space, where similar concepts are positioned closer together. The method likely uses batching to efficiently process large datasets and may employ techniques like length sorting to optimize padding and reduce computational waste."
+ ],
+ "metadata": {
+ "id": "zHehvJOdstmv"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "dataset = dataset_loader(\n",
+ " name=\"louisbrulenaudet/dac6-instruct\",\n",
+ " streaming=False,\n",
+ " split=\"train\"\n",
+ ")\n",
+ "\n",
+ "dataset.save_to_disk(\"dataset.hf\")\n",
+ "dataset"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 117,
+ "referenced_widgets": [
+ "6164d4034ebc4c9998b24eea7fcb6c9c",
+ "f2d186e9249c48739ad657d4fced59e1",
+ "a1d3611608a04262acef968c4bcf5cab",
+ "af433d70c63f4c98b7c7aa5805de545b",
+ "8ebc33062f62464fb07b85196fa51b83",
+ "7a04da2c8235414186ba778bcd747c55",
+ "13b1aae5e01c4a9da32c2652cb50cb33",
+ "849fbfab0ff94be89bc23b9f45956353",
+ "b846f7691776422598e50f2d9a6719cd",
+ "9b64e88626304a8797b23e5f9f69752c",
+ "6c8a85d410e44c34a1133610f43f1d2e"
+ ]
+ },
+ "id": "JeOvejs-LSh5",
+ "outputId": "a35a3e5e-42ee-4526-fdf3-949ee9f60733"
+ },
+ "execution_count": 18,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Saving the dataset (0/1 shards): 0%| | 0/414 [00:00, ? examples/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "6164d4034ebc4c9998b24eea7fcb6c9c"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Dataset({\n",
+ " features: ['instruction', 'output', 'input'],\n",
+ " num_rows: 414\n",
+ "})"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 18
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "embeddings = instance.encode(corpus=dataset[\"output\"])\n",
+ "embeddings"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 270,
+ "referenced_widgets": [
+ "e5c3429f78894b8088671a65198d35f0",
+ "2eac66b7087d4b1f86041f1fa49c8d92",
+ "86a3053d094b4853b3258cde202c6f42",
+ "6bd307756363414f832e8e5f23748cb2",
+ "0fd8f5d27312461192ccf8fbc2212c4b",
+ "181c9f9932e0483b8ca4fe4b13fe7ecb",
+ "7c091738255b4610ad4e8f20952748a8",
+ "6f84050fc7e046a9bb2738a84356d43d",
+ "244c4ae566a74163b0a2795374281256",
+ "39089e80fbaf495088f635bd15ab8bbe",
+ "73a79127b8b74dd3baba0802f729feea"
+ ]
+ },
+ "id": "EpMP2Uv-VG0Z",
+ "outputId": "7ecd3bbc-eeaa-4463-9fe9-1b584dc0c1ec"
+ },
+ "execution_count": 14,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Batches: 0%| | 0/13 [00:00, ?it/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "e5c3429f78894b8088671a65198d35f0"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[ 0.02508392, -0.00361205, -0.02245241, ..., 0.03226953,\n",
+ " -0.01613418, -0.04832081],\n",
+ " [-0.02329118, -0.02008231, 0.01489964, ..., 0.02344927,\n",
+ " 0.04810405, -0.02210646],\n",
+ " [ 0.00223175, -0.01829153, -0.02352205, ..., 0.01129541,\n",
+ " 0.00152115, -0.03072203],\n",
+ " ...,\n",
+ " [ 0.01643743, -0.02181389, -0.01811864, ..., 0.03853112,\n",
+ " 0.00745914, -0.02401087],\n",
+ " [ 0.00709248, 0.009109 , -0.05994354, ..., 0.04204508,\n",
+ " -0.00673348, -0.01090278],\n",
+ " [-0.00633491, -0.01061832, 0.02608344, ..., 0.07235143,\n",
+ " 0.00243154, -0.01910995]], dtype=float32)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 14
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Binary quantization\n",
+ "\n",
+ "Binary quantization is an extreme form of dimensionality reduction, where each dimension of the embedding is represented by a single bit. This process involves setting a threshold (often the median value for each dimension across the dataset) and encoding values above this threshold as 1 and below as 0. While this dramatically reduces memory usage (compressing each embedding to just 96 bytes for a 768-dimensional vector), it also results in a more significant loss of information compared to other quantization methods. However, it enables extremely fast similarity computations using hardware-accelerated bitwise operations."
+ ],
+ "metadata": {
+ "id": "O864pxFIt20G"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "ubinary_embeddings = instance.quantize_embeddings(\n",
+ " embeddings=embeddings,\n",
+ " quantization_type=\"ubinary\"\n",
+ ")\n",
+ "\n",
+ "ubinary_embeddings"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 153
+ },
+ "id": "jFHFF5eDVTs4",
+ "outputId": "10e70ec9-fc00-42e0-ec59-422fc597eef3"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[152, 86, 70, ..., 173, 112, 84],\n",
+ " [ 42, 215, 109, ..., 13, 60, 198],\n",
+ " [136, 151, 117, ..., 77, 208, 22],\n",
+ " ...,\n",
+ " [136, 148, 85, ..., 46, 248, 198],\n",
+ " [204, 222, 134, ..., 223, 216, 244],\n",
+ " [ 44, 21, 70, ..., 189, 244, 246]], dtype=uint8)"
+ ],
+ "text/html": [
+ "\n",
+ "
ndarray (414, 96)
array([[152, 86, 70, ..., 173, 112, 84],\n",
+ " [ 42, 215, 109, ..., 13, 60, 198],\n",
+ " [136, 151, 117, ..., 77, 208, 22],\n",
+ " ...,\n",
+ " [136, 148, 85, ..., 46, 248, 198],\n",
+ " [204, 222, 134, ..., 223, 216, 244],\n",
+ " [ 44, 21, 70, ..., 189, 244, 246]], dtype=uint8)
"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 8
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Quantizing embeddings to 8-bit integers\n",
+ "\n",
+ "Int8 quantization maps the continuous embedding values to a discrete set of 256 values represented by 8-bit integers. This process typically involves scaling the original values to fit within the int8 range (-128 to 127) and may use techniques like asymmetric quantization to preserve more information. While less extreme than binary quantization, int8 still offers substantial memory savings (reducing each dimension to 1 byte) while preserving more of the original information. This quantization enables efficient SIMD (Single Instruction, Multiple Data) operations on modern CPUs, significantly accelerating similarity computations."
+ ],
+ "metadata": {
+ "id": "KSWoo96YVlpd"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "int8_embeddings = instance.quantize_embeddings(\n",
+ " embeddings=embeddings,\n",
+ " quantization_type=\"int8\"\n",
+ ")\n",
+ "\n",
+ "int8_embeddings"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "SCEiWKlXVyAO",
+ "outputId": "cac70c19-8441-4872-9cf3-afdba953bbaa"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[ 55, -4, -13, ..., 5, -64, -11],\n",
+ " [-53, -30, 71, ..., -7, 43, 32],\n",
+ " [ 4, -27, -15, ..., -25, -34, 18],\n",
+ " ...,\n",
+ " [ 36, -33, -3, ..., 15, -24, 29],\n",
+ " [ 15, 16, -97, ..., 20, -48, 51],\n",
+ " [-15, -15, 96, ..., 65, -33, 37]], dtype=int8)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 9
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Creating a USEARCH index\n",
+ "\n",
+ "USEARCH is designed for high-performance approximate nearest neighbor search. The index creation process likely involves building a hierarchical structure, possibly a navigable small world (NSW) graph, which allows for efficient traversal during search operations. The use of int8 quantized embeddings enables USEARCH to leverage SIMD instructions for rapid distance calculations. The resulting index balances search speed and accuracy, allowing for fast retrieval with a controlled trade-off in precision."
+ ],
+ "metadata": {
+ "id": "fA8GqkFxk9AF"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "instance.create_usearch_index(\n",
+ " int8_embeddings=int8_embeddings,\n",
+ " index_path=\"./usearch_int8.index\",\n",
+ " save=True\n",
+ ")"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Uyt4yUfCV3Jy",
+ "outputId": "29ba3af3-841d-4079-e7c6-bd8033221c88"
+ },
+ "execution_count": 17,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "usearch.Index\n",
+ "- config\n",
+ "-- data type: ScalarKind.I8\n",
+ "-- dimensions: 768\n",
+ "-- metric: MetricKind.IP\n",
+ "-- multi: False\n",
+ "-- connectivity: 16\n",
+ "-- expansion on addition :128 candidates\n",
+ "-- expansion on search: 64 candidates\n",
+ "- binary\n",
+ "-- uses OpenMP: 0\n",
+ "-- uses SimSIMD: 1\n",
+ "-- supports half-precision: 1\n",
+ "-- uses hardware acceleration: haswell\n",
+ "- state\n",
+ "-- size: 414 vectors\n",
+ "-- memory usage: 20,975,808 bytes\n",
+ "-- max level: 2\n",
+ "--- 0. 414 nodes\n",
+ "--- 1. 26 nodes\n",
+ "--- 2. 2 nodes"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 17
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Creating a FAISS index\n",
+ "\n",
+ "FAISS (Facebook AI Similarity Search) is a library that provides efficient similarity search and clustering of dense vectors. For binary vectors, FAISS typically uses specialized index structures like the BinaryFlat index. This index performs exhaustive search using Hamming distance, which can be computed extremely efficiently on modern hardware using XOR and bit count operations. The binary nature of the index allows for compact storage and very fast search operations, albeit with reduced granularity in similarity scores compared to float-based indices."
+ ],
+ "metadata": {
+ "id": "bu4tRZdnlDxe"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "instance.create_faiss_index(\n",
+ " ubinary_embeddings=ubinary_embeddings,\n",
+ " index_path=\"./faiss_ubinary.index\",\n",
+ " save=True\n",
+ ")"
+ ],
+ "metadata": {
+ "id": "aT6qW9OZlDFZ"
+ },
+ "execution_count": 16,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Performing a similarity search\n",
+ "\n",
+ "The search process combines the strengths of both USEARCH and FAISS indices. It likely first uses the binary FAISS index for a rapid initial filtering step, leveraging the efficiency of Hamming distance calculations. The top candidates from this step (increased by the rescore_multiplier for better recall) are then refined using the more precise int8 USEARCH index. This two-stage approach balances speed and accuracy, allowing for quick pruning of unlikely candidates followed by more accurate rescoring.\n",
+ "\n",
+ "The query is first encoded using the same model and quantization processes as the corpus. The rescore_multiplier of 4 means the initial retrieval fetches 40 candidates (4 * top_k), which are then reranked to produce the final top 10 results. This oversampling helps mitigate the potential loss of relevant results due to quantization approximations."
+ ],
+ "metadata": {
+ "id": "uhPo-7y4lJyZ"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "top_k_scores, top_k_indices = instance.search(\n",
+ " query=\"Définir le rôle d'un intermédiaire concepteur conformément à l'article 1649 AE du Code général des Impôts.\",\n",
+ " top_k=10,\n",
+ " rescore_multiplier=4\n",
+ ")\n",
+ "print(top_k_scores, top_k_indices)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 86,
+ "referenced_widgets": [
+ "1b7a1c758c9844f6bb3297f5e907b125",
+ "a99fdb97b94b42b1ae2ede146cc02512",
+ "ce8efeb255504bcd8797022b70c89ac0",
+ "769a7ab752aa41a297ffa878f3b717b6",
+ "902ca7262ca94a7180f522df6b9b54f9",
+ "5f85ba1a93d04dbda65acab723e60ba2",
+ "125128e3613f40feb8153e3dd9e3b3aa",
+ "c2d320a7c814446db7159feeb907b6a2",
+ "f5d20157226846fd983f11904cf9eecf",
+ "fb117e7bda4a445ba65b472a64971440",
+ "ffcdbc40630a4056a8929fb5a8a88cdd"
+ ]
+ },
+ "id": "SjyvMgbJlIBn",
+ "outputId": "b24a2110-9631-4a20-a38f-cb72d137d698"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Batches: 0%| | 0/1 [00:00, ?it/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "1b7a1c758c9844f6bb3297f5e907b125"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "[2647.0556676079723, 2148.418636998307, 2106.1046419678387, 1961.8936295222884, 1947.321377885688, 1864.701749966327, 1845.0419668774193, 1795.922021207407, 1774.0641026571975, 1706.500367158289] [342, 66, 359, 242, 369, 10, 33, 261, 181, 230]\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "try:\n",
+ " dataframe = pl.from_arrow(dataset.data.table).with_row_index()\n",
+ "\n",
+ "except:\n",
+ " dataframe = pl.from_arrow(dataset.data.table).with_row_count(\n",
+ " name=\"index\"\n",
+ " )\n",
+ "\n",
+ "\n",
+ "scores_df = pl.DataFrame(\n",
+ " {\n",
+ " \"index\": top_k_indices,\n",
+ " \"score\": top_k_scores\n",
+ " }\n",
+ ").with_columns(\n",
+ " pl.col(\"index\").cast(pl.UInt32)\n",
+ ")\n",
+ "\n",
+ "search_results = dataframe.filter(\n",
+ " pl.col(\"index\").is_in(top_k_indices)\n",
+ ").join(\n",
+ " scores_df,\n",
+ " how=\"inner\",\n",
+ " on=\"index\"\n",
+ ")\n",
+ "\n",
+ "search_results"
+ ],
+ "metadata": {
+ "id": "m2hWxxDlWSx3"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Embeddings visualization"
+ ],
+ "metadata": {
+ "id": "ELYDV7R3V-Tx"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "visualizer = EmbeddingsVisualizer(\n",
+ " index_path=\"./faiss_ubinary.index\",\n",
+ " dataset_path=\"./dataset.hf\"\n",
+ ")"
+ ],
+ "metadata": {
+ "id": "14nt56-u1UDX"
+ },
+ "execution_count": 20,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "visualizer.visualize(\n",
+ " column=\"output\"\n",
+ " method=\"pca\",\n",
+ " save_html=True,\n",
+ " html_file_name=\"embedding_visualization.html\"\n",
+ ")"
+ ],
+ "metadata": {
+ "id": "-Q60-p1R2WwI"
+ },
+ "execution_count": null,
+ "outputs": []
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "provenance": [],
+ "gpuType": "T4",
+ "authorship_tag": "ABX9TyMNiEWE/yG9aSWSlND8w7Z7",
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "name": "python"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "3b0740b7c1184b11af19a2575c2028d7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ed036c7e98d34ca1b1fefb5f7d7da690",
+ "IPY_MODEL_041dcd84dd8047b8bb00dcf0a8605366",
+ "IPY_MODEL_6ffed718be9d47b08b0f319823627692"
+ ],
+ "layout": "IPY_MODEL_bd764b4c8d3a4218a51ac6cfa016b176"
+ }
+ },
+ "ed036c7e98d34ca1b1fefb5f7d7da690": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_459b6bd8f7804c6fa2cfbbf3574fea81",
+ "placeholder": "",
+ "style": "IPY_MODEL_310db8d9db6e4b05b3340d9ac4e6a885",
+ "value": "modules.json: 100%"
+ }
+ },
+ "041dcd84dd8047b8bb00dcf0a8605366": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_454e18ed66a543e88829d0eb1c7585dd",
+ "max": 229,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_341d5f623a4e4d97a0b02a8b1f8372fa",
+ "value": 229
+ }
+ },
+ "6ffed718be9d47b08b0f319823627692": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bf1831cf76294173ad2f4506bab90601",
+ "placeholder": "",
+ "style": "IPY_MODEL_d840ecb454ce401b9781ca181204320f",
+ "value": " 229/229 [00:00<00:00, 11.3kB/s]"
+ }
+ },
+ "bd764b4c8d3a4218a51ac6cfa016b176": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "459b6bd8f7804c6fa2cfbbf3574fea81": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "310db8d9db6e4b05b3340d9ac4e6a885": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "454e18ed66a543e88829d0eb1c7585dd": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "341d5f623a4e4d97a0b02a8b1f8372fa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "bf1831cf76294173ad2f4506bab90601": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d840ecb454ce401b9781ca181204320f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "990877dd1448431ca676da862de76e66": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_215f503d83524f22b534383c76bb7aa5",
+ "IPY_MODEL_57d8c511f130440ab43cd26946d73484",
+ "IPY_MODEL_6ad57261fbcc4033bcf3c56e01f14099"
+ ],
+ "layout": "IPY_MODEL_9d590a1002364797a243818665f95cea"
+ }
+ },
+ "215f503d83524f22b534383c76bb7aa5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_31967af398094a5b8003a78d7cdef06a",
+ "placeholder": "",
+ "style": "IPY_MODEL_ee1e1101bcae43f8b938b70758635e28",
+ "value": "config_sentence_transformers.json: 100%"
+ }
+ },
+ "57d8c511f130440ab43cd26946d73484": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fcadc705920c4dc0a965eff5b1de8088",
+ "max": 123,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_9cedabb67be046b7b0dfb7ca89c8e299",
+ "value": 123
+ }
+ },
+ "6ad57261fbcc4033bcf3c56e01f14099": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_91962d7fbd814ae0b6a6e10072f621bc",
+ "placeholder": "",
+ "style": "IPY_MODEL_910e040f53c246048d85236b525d7e95",
+ "value": " 123/123 [00:00<00:00, 9.79kB/s]"
+ }
+ },
+ "9d590a1002364797a243818665f95cea": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "31967af398094a5b8003a78d7cdef06a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ee1e1101bcae43f8b938b70758635e28": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "fcadc705920c4dc0a965eff5b1de8088": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9cedabb67be046b7b0dfb7ca89c8e299": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "91962d7fbd814ae0b6a6e10072f621bc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "910e040f53c246048d85236b525d7e95": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "017b2cc0c5594dc6a4624b0bec38fe73": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_476cac6399c142efa95e85a5b159dd20",
+ "IPY_MODEL_ce8b3efd425e43158a2b55f8e47b8d56",
+ "IPY_MODEL_1fe1c159c31a4f8dba9beb0c53e49bbc"
+ ],
+ "layout": "IPY_MODEL_f121aa8e2b4a41feb4e7966f1a697d6f"
+ }
+ },
+ "476cac6399c142efa95e85a5b159dd20": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_66abd6f0b54c47548f3f8074d9af2af8",
+ "placeholder": "",
+ "style": "IPY_MODEL_8347c3e484fa43b785c2a1392d4bf1aa",
+ "value": "README.md: 100%"
+ }
+ },
+ "ce8b3efd425e43158a2b55f8e47b8d56": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5a1a0dd9fd9f4f0195f8ead413dfd1a9",
+ "max": 6114,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ef52f1ca67554e29a478abcd91eae44f",
+ "value": 6114
+ }
+ },
+ "1fe1c159c31a4f8dba9beb0c53e49bbc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2629efe6d2044c29a22d9736b71523f4",
+ "placeholder": "",
+ "style": "IPY_MODEL_2c0e040a88e948a2835e07dd3fac05f0",
+ "value": " 6.11k/6.11k [00:00<00:00, 302kB/s]"
+ }
+ },
+ "f121aa8e2b4a41feb4e7966f1a697d6f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "66abd6f0b54c47548f3f8074d9af2af8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "8347c3e484fa43b785c2a1392d4bf1aa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5a1a0dd9fd9f4f0195f8ead413dfd1a9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ef52f1ca67554e29a478abcd91eae44f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "2629efe6d2044c29a22d9736b71523f4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2c0e040a88e948a2835e07dd3fac05f0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5d298e5197c94cb183ca668444f8ca81": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1f4ea0c70e9c4923b7de5e307c01fcd5",
+ "IPY_MODEL_8527969d2f9d4b8da907cb8d586c27eb",
+ "IPY_MODEL_a10b2bca915841479e634c16af092d00"
+ ],
+ "layout": "IPY_MODEL_da023e01ccb34cd6a0d63ac05c4caf0f"
+ }
+ },
+ "1f4ea0c70e9c4923b7de5e307c01fcd5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cc58183628524f24b2f1cbe66527cf03",
+ "placeholder": "",
+ "style": "IPY_MODEL_77a0828fab334bf280fde83577adbc36",
+ "value": "sentence_bert_config.json: 100%"
+ }
+ },
+ "8527969d2f9d4b8da907cb8d586c27eb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_874f00bd481e40c0802f3b6312d1e7c1",
+ "max": 53,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_aab5b68dd3ce4d019b582188871e937e",
+ "value": 53
+ }
+ },
+ "a10b2bca915841479e634c16af092d00": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f51d2b0311ad4fa895f1c7c5c2c2ecee",
+ "placeholder": "",
+ "style": "IPY_MODEL_910a5796ac244e74b3fcd189166a7279",
+ "value": " 53.0/53.0 [00:00<00:00, 3.83kB/s]"
+ }
+ },
+ "da023e01ccb34cd6a0d63ac05c4caf0f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cc58183628524f24b2f1cbe66527cf03": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "77a0828fab334bf280fde83577adbc36": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "874f00bd481e40c0802f3b6312d1e7c1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "aab5b68dd3ce4d019b582188871e937e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "f51d2b0311ad4fa895f1c7c5c2c2ecee": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "910a5796ac244e74b3fcd189166a7279": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "897fb40e1b0347a089aa4cb0fab582f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_744c5ae12aac4e9faa4a4845af24e3e9",
+ "IPY_MODEL_c4616271c618426cbe1043dd0ef541a5",
+ "IPY_MODEL_c245609de8ea43bb88c500e484638238"
+ ],
+ "layout": "IPY_MODEL_60fd5071bae7484f991e1fc6aca170de"
+ }
+ },
+ "744c5ae12aac4e9faa4a4845af24e3e9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_de77ef90160f4d89a01e99fab514e0bb",
+ "placeholder": "",
+ "style": "IPY_MODEL_ceb21ab3f6ef43c68642439fa948590c",
+ "value": "config.json: 100%"
+ }
+ },
+ "c4616271c618426cbe1043dd0ef541a5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_141eb847045b48f69698e36bbff54e9e",
+ "max": 828,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0f598dd46d844505a64a85ccb22aa462",
+ "value": 828
+ }
+ },
+ "c245609de8ea43bb88c500e484638238": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_87d22f7577a94256aeca8146b6797101",
+ "placeholder": "",
+ "style": "IPY_MODEL_a0c1f63835ea4700b5d59de386045f82",
+ "value": " 828/828 [00:00<00:00, 63.3kB/s]"
+ }
+ },
+ "60fd5071bae7484f991e1fc6aca170de": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "de77ef90160f4d89a01e99fab514e0bb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ceb21ab3f6ef43c68642439fa948590c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "141eb847045b48f69698e36bbff54e9e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0f598dd46d844505a64a85ccb22aa462": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "87d22f7577a94256aeca8146b6797101": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a0c1f63835ea4700b5d59de386045f82": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6b07d0ea362e442fb4a9f46fa66b8155": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4d8991a173e5485a966fc51a0d58222d",
+ "IPY_MODEL_d57b5e6e0017437db70929616ad041d7",
+ "IPY_MODEL_9bbe6c83fe2f4bb6817e3177006af255"
+ ],
+ "layout": "IPY_MODEL_cbcb40306ff84710983dfc47b3ed0ad0"
+ }
+ },
+ "4d8991a173e5485a966fc51a0d58222d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_76bd90a147dd4d3da5b7bcb1bd759b9d",
+ "placeholder": "",
+ "style": "IPY_MODEL_a3ee7025242c48aea17ce4935c467742",
+ "value": "model.safetensors: 100%"
+ }
+ },
+ "d57b5e6e0017437db70929616ad041d7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4267bf1283a04abda6e7877b43d04b52",
+ "max": 669448040,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0bdddb3424f44dbe97674c45488dd4eb",
+ "value": 669448040
+ }
+ },
+ "9bbe6c83fe2f4bb6817e3177006af255": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8330426f6ff140b6aba7190543688c2f",
+ "placeholder": "",
+ "style": "IPY_MODEL_0fabe9fd86344ae1928752e6b4abc883",
+ "value": " 669M/669M [00:13<00:00, 48.8MB/s]"
+ }
+ },
+ "cbcb40306ff84710983dfc47b3ed0ad0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "76bd90a147dd4d3da5b7bcb1bd759b9d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a3ee7025242c48aea17ce4935c467742": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4267bf1283a04abda6e7877b43d04b52": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0bdddb3424f44dbe97674c45488dd4eb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "8330426f6ff140b6aba7190543688c2f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0fabe9fd86344ae1928752e6b4abc883": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "78a210fcb03a4450b34e73b7f4dc2280": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ccb12bd8b80242c38f644fc73bc4edd5",
+ "IPY_MODEL_8b647e9a5eb84dada7715f764258a7df",
+ "IPY_MODEL_4398e38513ae40d5a0a9399c89fd60a7"
+ ],
+ "layout": "IPY_MODEL_fee8560569fa4c8797ce9d25fe587bff"
+ }
+ },
+ "ccb12bd8b80242c38f644fc73bc4edd5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3ff7fe78226542c4adc84898179249a6",
+ "placeholder": "",
+ "style": "IPY_MODEL_0c959e89a32e42d8885bb9168ab3036f",
+ "value": "tokenizer_config.json: 100%"
+ }
+ },
+ "8b647e9a5eb84dada7715f764258a7df": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bc7a5be54a8e43fc92a49b7c812b8a48",
+ "max": 1190,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f8af455ea779482cab33235f505fe5ef",
+ "value": 1190
+ }
+ },
+ "4398e38513ae40d5a0a9399c89fd60a7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1e2db34d262f41cabd288f1100fed025",
+ "placeholder": "",
+ "style": "IPY_MODEL_d26d7c429d9a4e80aba1c7de6e7e64f0",
+ "value": " 1.19k/1.19k [00:00<00:00, 90.8kB/s]"
+ }
+ },
+ "fee8560569fa4c8797ce9d25fe587bff": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3ff7fe78226542c4adc84898179249a6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0c959e89a32e42d8885bb9168ab3036f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "bc7a5be54a8e43fc92a49b7c812b8a48": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f8af455ea779482cab33235f505fe5ef": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1e2db34d262f41cabd288f1100fed025": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d26d7c429d9a4e80aba1c7de6e7e64f0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "558cf7b57e9c4f729d834ac6d5ef6bfe": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4cf43d2ded134c06ab1df7509d226175",
+ "IPY_MODEL_14e16de286304a94a75960fe47176237",
+ "IPY_MODEL_c435a072016d4dc3b30e409f2410450e"
+ ],
+ "layout": "IPY_MODEL_b4295cdb89d14877b60eb45c913f7409"
+ }
+ },
+ "4cf43d2ded134c06ab1df7509d226175": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_91db42f83e454d1baf20cc1e0af0e1e1",
+ "placeholder": "",
+ "style": "IPY_MODEL_227f6358cc4a47b3b6da3001a0e3fdbf",
+ "value": "vocab.txt: 100%"
+ }
+ },
+ "14e16de286304a94a75960fe47176237": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cf4bae6c34b34d3abeaa1a77454f4097",
+ "max": 871891,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_834f4a6d80eb4c1a8a3cf6276e071553",
+ "value": 871891
+ }
+ },
+ "c435a072016d4dc3b30e409f2410450e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c5d2f8d7eb8d40c8b976c43406ed0204",
+ "placeholder": "",
+ "style": "IPY_MODEL_6848d43f27bc4ce195806fb51e741a6f",
+ "value": " 872k/872k [00:00<00:00, 3.24MB/s]"
+ }
+ },
+ "b4295cdb89d14877b60eb45c913f7409": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "91db42f83e454d1baf20cc1e0af0e1e1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "227f6358cc4a47b3b6da3001a0e3fdbf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "cf4bae6c34b34d3abeaa1a77454f4097": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "834f4a6d80eb4c1a8a3cf6276e071553": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c5d2f8d7eb8d40c8b976c43406ed0204": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6848d43f27bc4ce195806fb51e741a6f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c182ee1819344032ad954b39d261e35e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b20264f18ecc4f89bdb2ad9ec3052d0f",
+ "IPY_MODEL_0ab071ebac92435791261ebebca4d103",
+ "IPY_MODEL_115636ffa31a4212a2bb7294733744f3"
+ ],
+ "layout": "IPY_MODEL_c8b243e465c74845b21ce64729bd7e34"
+ }
+ },
+ "b20264f18ecc4f89bdb2ad9ec3052d0f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_09d7e4295da04cc68569f096f60dc0da",
+ "placeholder": "",
+ "style": "IPY_MODEL_18a5275ac2864347ba605046e798f344",
+ "value": "tokenizer.json: 100%"
+ }
+ },
+ "0ab071ebac92435791261ebebca4d103": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a193ba8df21d4434a83079faaace6a16",
+ "max": 2563623,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_810c7730004b4d92adde4a835b9e8896",
+ "value": 2563623
+ }
+ },
+ "115636ffa31a4212a2bb7294733744f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9c17c34bca294f6ab92dc2973ad831bd",
+ "placeholder": "",
+ "style": "IPY_MODEL_9beabf1daab340ae82a12ae4ad44defd",
+ "value": " 2.56M/2.56M [00:00<00:00, 9.70MB/s]"
+ }
+ },
+ "c8b243e465c74845b21ce64729bd7e34": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "09d7e4295da04cc68569f096f60dc0da": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "18a5275ac2864347ba605046e798f344": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a193ba8df21d4434a83079faaace6a16": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "810c7730004b4d92adde4a835b9e8896": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "9c17c34bca294f6ab92dc2973ad831bd": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9beabf1daab340ae82a12ae4ad44defd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "0d52cd598ddb4f63ab68ebb3a1672936": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a7378ef70c964373873ac13eb9188af7",
+ "IPY_MODEL_532eeb99350e444fad7fe3f659e118cb",
+ "IPY_MODEL_99f18945bfa4496badf1b6398eced269"
+ ],
+ "layout": "IPY_MODEL_26924bd271a34fd3b6bc4cd4ef7d0fc8"
+ }
+ },
+ "a7378ef70c964373873ac13eb9188af7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1069c57ab76349acb1df1e267836877b",
+ "placeholder": "",
+ "style": "IPY_MODEL_0d5f036ec3d84483b88de5c312c24631",
+ "value": "special_tokens_map.json: 100%"
+ }
+ },
+ "532eeb99350e444fad7fe3f659e118cb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b35af0a4b0394d6ca66388187a12b9c9",
+ "max": 125,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_fd08587944f34eb2a2e72d6ebdf11dc9",
+ "value": 125
+ }
+ },
+ "99f18945bfa4496badf1b6398eced269": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5f8560ee9dea418a85f693dd4f771a72",
+ "placeholder": "",
+ "style": "IPY_MODEL_961a5e9e866f4a0aa772e0395d2c5cc4",
+ "value": " 125/125 [00:00<00:00, 5.41kB/s]"
+ }
+ },
+ "26924bd271a34fd3b6bc4cd4ef7d0fc8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1069c57ab76349acb1df1e267836877b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0d5f036ec3d84483b88de5c312c24631": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b35af0a4b0394d6ca66388187a12b9c9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fd08587944f34eb2a2e72d6ebdf11dc9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "5f8560ee9dea418a85f693dd4f771a72": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "961a5e9e866f4a0aa772e0395d2c5cc4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "9ba34593f7c449acacde80b276e47e5e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b227d4b242384297883d73e2ef4ad36b",
+ "IPY_MODEL_2aa6f24c423a4c9fbae4c9e2f59cd1ef",
+ "IPY_MODEL_13147575bc324653ad03fe2b764c0f30"
+ ],
+ "layout": "IPY_MODEL_622c32270e6548ed9514345c0c1450cb"
+ }
+ },
+ "b227d4b242384297883d73e2ef4ad36b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_15f0540100a44d1cada3d2f6a0e927d4",
+ "placeholder": "",
+ "style": "IPY_MODEL_183376a937604feca5a8fe1e01e8d8e6",
+ "value": "1_Pooling/config.json: 100%"
+ }
+ },
+ "2aa6f24c423a4c9fbae4c9e2f59cd1ef": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e192d2a4b79b45ff858d90751fc7ebea",
+ "max": 190,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_2693cf39ba874fff92e1b5294e796ed7",
+ "value": 190
+ }
+ },
+ "13147575bc324653ad03fe2b764c0f30": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a070c177e8f94802a073d9be6a3226b6",
+ "placeholder": "",
+ "style": "IPY_MODEL_984117efb8c548ccb2debd825d89d156",
+ "value": " 190/190 [00:00<00:00, 11.2kB/s]"
+ }
+ },
+ "622c32270e6548ed9514345c0c1450cb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "15f0540100a44d1cada3d2f6a0e927d4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "183376a937604feca5a8fe1e01e8d8e6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e192d2a4b79b45ff858d90751fc7ebea": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2693cf39ba874fff92e1b5294e796ed7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "a070c177e8f94802a073d9be6a3226b6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "984117efb8c548ccb2debd825d89d156": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1b7a1c758c9844f6bb3297f5e907b125": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a99fdb97b94b42b1ae2ede146cc02512",
+ "IPY_MODEL_ce8efeb255504bcd8797022b70c89ac0",
+ "IPY_MODEL_769a7ab752aa41a297ffa878f3b717b6"
+ ],
+ "layout": "IPY_MODEL_902ca7262ca94a7180f522df6b9b54f9"
+ }
+ },
+ "a99fdb97b94b42b1ae2ede146cc02512": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5f85ba1a93d04dbda65acab723e60ba2",
+ "placeholder": "",
+ "style": "IPY_MODEL_125128e3613f40feb8153e3dd9e3b3aa",
+ "value": "Batches: 100%"
+ }
+ },
+ "ce8efeb255504bcd8797022b70c89ac0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c2d320a7c814446db7159feeb907b6a2",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f5d20157226846fd983f11904cf9eecf",
+ "value": 1
+ }
+ },
+ "769a7ab752aa41a297ffa878f3b717b6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fb117e7bda4a445ba65b472a64971440",
+ "placeholder": "",
+ "style": "IPY_MODEL_ffcdbc40630a4056a8929fb5a8a88cdd",
+ "value": " 1/1 [00:00<00:00, 31.84it/s]"
+ }
+ },
+ "902ca7262ca94a7180f522df6b9b54f9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5f85ba1a93d04dbda65acab723e60ba2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "125128e3613f40feb8153e3dd9e3b3aa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c2d320a7c814446db7159feeb907b6a2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f5d20157226846fd983f11904cf9eecf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "fb117e7bda4a445ba65b472a64971440": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ffcdbc40630a4056a8929fb5a8a88cdd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6164d4034ebc4c9998b24eea7fcb6c9c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f2d186e9249c48739ad657d4fced59e1",
+ "IPY_MODEL_a1d3611608a04262acef968c4bcf5cab",
+ "IPY_MODEL_af433d70c63f4c98b7c7aa5805de545b"
+ ],
+ "layout": "IPY_MODEL_8ebc33062f62464fb07b85196fa51b83"
+ }
+ },
+ "f2d186e9249c48739ad657d4fced59e1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7a04da2c8235414186ba778bcd747c55",
+ "placeholder": "",
+ "style": "IPY_MODEL_13b1aae5e01c4a9da32c2652cb50cb33",
+ "value": "Saving the dataset (1/1 shards): 100%"
+ }
+ },
+ "a1d3611608a04262acef968c4bcf5cab": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_849fbfab0ff94be89bc23b9f45956353",
+ "max": 414,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b846f7691776422598e50f2d9a6719cd",
+ "value": 414
+ }
+ },
+ "af433d70c63f4c98b7c7aa5805de545b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9b64e88626304a8797b23e5f9f69752c",
+ "placeholder": "",
+ "style": "IPY_MODEL_6c8a85d410e44c34a1133610f43f1d2e",
+ "value": " 414/414 [00:00<00:00, 11528.63 examples/s]"
+ }
+ },
+ "8ebc33062f62464fb07b85196fa51b83": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7a04da2c8235414186ba778bcd747c55": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "13b1aae5e01c4a9da32c2652cb50cb33": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "849fbfab0ff94be89bc23b9f45956353": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b846f7691776422598e50f2d9a6719cd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "9b64e88626304a8797b23e5f9f69752c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6c8a85d410e44c34a1133610f43f1d2e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e5c3429f78894b8088671a65198d35f0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_2eac66b7087d4b1f86041f1fa49c8d92",
+ "IPY_MODEL_86a3053d094b4853b3258cde202c6f42",
+ "IPY_MODEL_6bd307756363414f832e8e5f23748cb2"
+ ],
+ "layout": "IPY_MODEL_0fd8f5d27312461192ccf8fbc2212c4b"
+ }
+ },
+ "2eac66b7087d4b1f86041f1fa49c8d92": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_181c9f9932e0483b8ca4fe4b13fe7ecb",
+ "placeholder": "",
+ "style": "IPY_MODEL_7c091738255b4610ad4e8f20952748a8",
+ "value": "Batches: 100%"
+ }
+ },
+ "86a3053d094b4853b3258cde202c6f42": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6f84050fc7e046a9bb2738a84356d43d",
+ "max": 13,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_244c4ae566a74163b0a2795374281256",
+ "value": 13
+ }
+ },
+ "6bd307756363414f832e8e5f23748cb2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_39089e80fbaf495088f635bd15ab8bbe",
+ "placeholder": "",
+ "style": "IPY_MODEL_73a79127b8b74dd3baba0802f729feea",
+ "value": " 13/13 [00:04<00:00, 4.67it/s]"
+ }
+ },
+ "0fd8f5d27312461192ccf8fbc2212c4b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "181c9f9932e0483b8ca4fe4b13fe7ecb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7c091738255b4610ad4e8f20952748a8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6f84050fc7e046a9bb2738a84356d43d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "244c4ae566a74163b0a2795374281256": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "39089e80fbaf495088f635bd15ab8bbe": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "73a79127b8b74dd3baba0802f729feea": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ }
+ }
+ },
+ "accelerator": "GPU"
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file