forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
texturecubemaparray.cpp
553 lines (478 loc) · 22.3 KB
/
texturecubemaparray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
/*
* Vulkan Example - Cube map array texture loading and displaying
*
* Copyright (C) 2020 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#include <ktx.h>
#include <ktxvulkan.h>
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
bool displaySkybox = true;
vks::Texture cubeMapArray;
struct Meshes {
vkglTF::Model skybox;
std::vector<vkglTF::Model> objects;
int32_t objectIndex = 0;
} models;
struct {
vks::Buffer object;
vks::Buffer skybox;
} uniformBuffers;
struct ShaderData {
glm::mat4 projection;
glm::mat4 modelView;
glm::mat4 inverseModelview;
float lodBias = 0.0f;
int cubeMapIndex = 1;
} shaderData;
struct {
VkPipeline skybox;
VkPipeline reflect;
} pipelines;
struct {
VkDescriptorSet object;
VkDescriptorSet skybox;
} descriptorSets;
VkPipelineLayout pipelineLayout;
VkDescriptorSetLayout descriptorSetLayout;
std::vector<std::string> objectNames;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Cube map textures";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -4.0f));
camera.setRotationSpeed(0.25f);
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
}
~VulkanExample()
{
// Clean up texture resources
vkDestroyImageView(device, cubeMapArray.view, nullptr);
vkDestroyImage(device, cubeMapArray.image, nullptr);
vkDestroySampler(device, cubeMapArray.sampler, nullptr);
vkFreeMemory(device, cubeMapArray.deviceMemory, nullptr);
vkDestroyPipeline(device, pipelines.skybox, nullptr);
vkDestroyPipeline(device, pipelines.reflect, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
uniformBuffers.object.destroy();
uniformBuffers.skybox.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
if (deviceFeatures.imageCubeArray) {
enabledFeatures.imageCubeArray = VK_TRUE;
} else {
vks::tools::exitFatal("Selected GPU does not support cube map arrays!", VK_ERROR_FEATURE_NOT_PRESENT);
}
enabledFeatures.imageCubeArray = VK_TRUE;
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
};
void loadCubemapArray(std::string filename, VkFormat format, bool forceLinearTiling)
{
ktxResult result;
ktxTexture* ktxTexture;
#if defined(__ANDROID__)
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
if (!asset) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
}
size_t size = AAsset_getLength(asset);
assert(size > 0);
ktx_uint8_t *textureData = new ktx_uint8_t[size];
AAsset_read(asset, textureData, size);
AAsset_close(asset);
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
delete[] textureData;
#else
if (!vks::tools::fileExists(filename)) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
}
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
#endif
assert(result == KTX_SUCCESS);
// Get properties required for using and upload texture data from the ktx texture object
cubeMapArray.width = ktxTexture->baseWidth;
cubeMapArray.height = ktxTexture->baseHeight;
cubeMapArray.mipLevels = ktxTexture->numLevels;
cubeMapArray.layerCount = ktxTexture->numLayers;
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
vks::Buffer sourceData;
// Create a host-visible source buffer that contains the raw image data
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = ktxTextureSize;
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &sourceData.buffer));
// Get memory requirements for the source buffer (alignment, memory type bits)
VkMemoryRequirements memReqs;
vkGetBufferMemoryRequirements(device, sourceData.buffer, &memReqs);
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &sourceData.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, sourceData.buffer, sourceData.memory, 0));
// Copy the ktx image data into the source buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device, sourceData.memory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, ktxTextureData, ktxTextureSize);
vkUnmapMemory(device, sourceData.memory);
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = cubeMapArray.mipLevels;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { cubeMapArray.width, cubeMapArray.height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
// Cube faces count as array layers in Vulkan
imageCreateInfo.arrayLayers = 6 * cubeMapArray.layerCount;
// This flag is required for cube map images
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &cubeMapArray.image));
// Allocate memory for the cube map array image
vkGetImageMemoryRequirements(device, cubeMapArray.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &cubeMapArray.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, cubeMapArray.image, cubeMapArray.deviceMemory, 0));
/*
We now copy the parts that make up the cube map array to our image via a command buffer
Cube map arrays in ktx are stored with a layout like this:
- Mip Level 0
- Layer 0 (= Cube map 0)
- Face +X
- Face -X
- Face +Y
- Face -Y
- Face +Z
- Face -Z
- Layer 1 (= Cube map 1)
- Face +X
...
- Mip Level 1
- Layer 0 (= Cube map 0)
- Face +X
...
- Layer 1 (= Cube map 1)
- Face +X
...
*/
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Setup buffer copy regions for each face including all of its miplevels
std::vector<VkBufferImageCopy> bufferCopyRegions;
uint32_t offset = 0;
for (uint32_t face = 0; face < 6; face++) {
for (uint32_t layer = 0; layer < ktxTexture->numLayers; layer++) {
for (uint32_t level = 0; level < ktxTexture->numLevels; level++) {
ktx_size_t offset;
KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, level, layer, face, &offset);
assert(ret == KTX_SUCCESS);
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = level;
bufferCopyRegion.imageSubresource.baseArrayLayer = layer * 6 + face;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = ktxTexture->baseWidth >> level;
bufferCopyRegion.imageExtent.height = ktxTexture->baseHeight >> level;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
}
}
}
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = cubeMapArray.mipLevels;
subresourceRange.layerCount = 6 * cubeMapArray.layerCount;
// Transition target image to accept the writes from our buffer to image copies
vks::tools::setImageLayout(copyCmd, cubeMapArray.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange);
// Copy the cube map array buffer parts from the staging buffer to the optimal tiled image
vkCmdCopyBufferToImage(
copyCmd,
sourceData.buffer,
cubeMapArray.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data()
);
// Transition image to shader read layout
cubeMapArray.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vks::tools::setImageLayout(copyCmd, cubeMapArray.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, cubeMapArray.imageLayout, subresourceRange);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Create sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = static_cast<float>(cubeMapArray.mipLevels);
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
sampler.maxAnisotropy = 1.0f;
if (vulkanDevice->features.samplerAnisotropy)
{
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
sampler.anisotropyEnable = VK_TRUE;
}
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &cubeMapArray.sampler));
// Create the image view for a cube map array
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_CUBE_ARRAY;
view.format = format;
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = 6 * cubeMapArray.layerCount;
view.subresourceRange.levelCount = cubeMapArray.mipLevels;
view.image = cubeMapArray.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &cubeMapArray.view));
// Clean up staging resources
vkFreeMemory(device, sourceData.memory, nullptr);
vkDestroyBuffer(device, sourceData.buffer, nullptr);
ktxTexture_Destroy(ktxTexture);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Skybox
if (displaySkybox)
{
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.skybox, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox);
models.skybox.draw(drawCmdBuffers[i]);
}
// 3D object
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.object, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.reflect);
models.objects[models.objectIndex].draw(drawCmdBuffers[i]);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY;
// Skybox
models.skybox.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
// Objects
std::vector<std::string> filenames = { "sphere.gltf", "teapot.gltf", "torusknot.gltf", "venus.gltf" };
objectNames = { "Sphere", "Teapot", "Torusknot", "Venus" };
models.objects.resize(filenames.size());
for (size_t i = 0; i < filenames.size(); i++) {
models.objects[i].loadFromFile(getAssetPath() + "models/" + filenames[i], vulkanDevice, queue, glTFLoadingFlags);
}
// Load the cube map array from a ktx texture file
loadCubemapArray(getAssetPath() + "textures/cubemap_array.ktx", VK_FORMAT_R8G8B8A8_UNORM, false);
}
void setupDescriptorPool()
{
const std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
const VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
const std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
const VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
const VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
}
void setupDescriptorSets()
{
// Image descriptor for the cube map texture
VkDescriptorImageInfo textureDescriptor = vks::initializers::descriptorImageInfo(cubeMapArray.sampler, cubeMapArray.view, cubeMapArray.imageLayout);
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
// 3D object descriptor set
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.object));
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.object.descriptor),
// Binding 1 : Fragment shader cubemap sampler
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureDescriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Sky box descriptor set
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skybox));
writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.skybox.descriptor),
// Binding 1 : Fragment shader cubemap sampler
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureDescriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal });
// Skybox pipeline (background cube)
shaderStages[0] = loadShader(getShadersPath() + "texturecubemaparray/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texturecubemaparray/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.skybox));
// Cube map reflect pipeline
shaderStages[0] = loadShader(getShadersPath() + "texturecubemaparray/reflect.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texturecubemaparray/reflect.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Enable depth test and write
depthStencilState.depthWriteEnable = VK_TRUE;
depthStencilState.depthTestEnable = VK_TRUE;
// Flip cull mode
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.reflect));
}
void prepareUniformBuffers()
{
// Object vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.object,
sizeof(ShaderData)));
// Skybox vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.skybox,
sizeof(ShaderData)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.object.map());
VK_CHECK_RESULT(uniformBuffers.skybox.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
// 3D object
shaderData.projection = camera.matrices.perspective;
shaderData.modelView = camera.matrices.view;
shaderData.inverseModelview = glm::inverse(camera.matrices.view);
memcpy(uniformBuffers.object.mapped, &shaderData, sizeof(ShaderData));
// Skybox
shaderData.modelView = camera.matrices.view;
// Cancel out translation
shaderData.modelView[3] = glm::vec4(0.0f, 0.0f, 0.0f, 1.0f);
memcpy(uniformBuffers.skybox.mapped, &shaderData, sizeof(ShaderData));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated) {
updateUniformBuffers();
}
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->sliderInt("Cube map", &shaderData.cubeMapIndex, 0, cubeMapArray.layerCount - 1)) {
updateUniformBuffers();
}
if (overlay->sliderFloat("LOD bias", &shaderData.lodBias, 0.0f, (float)cubeMapArray.mipLevels)) {
updateUniformBuffers();
}
if (overlay->comboBox("Object type", &models.objectIndex, objectNames)) {
buildCommandBuffers();
}
if (overlay->checkBox("Skybox", &displaySkybox)) {
buildCommandBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()