-
Notifications
You must be signed in to change notification settings - Fork 3
/
evaluate.py
220 lines (178 loc) · 8.15 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import os
import numpy as np
import tensorflow as tf
from glob import glob
import re
import csv
from collections import OrderedDict
import os
from Common import pc_util
from Common.pc_util import load, save_ply_property,get_pairwise_distance
from Common.ops import normalize_point_cloud
from tf_ops.nn_distance import tf_nndistance
from sklearn.neighbors import NearestNeighbors
import math
from time import time
parser = argparse.ArgumentParser()
parser.add_argument("--pred", type=str, required=True, help=".xyz")
parser.add_argument("--gt", type=str, required=True, help=".xyz")
parser.add_argument('--gpu', default='1')
FLAGS = parser.parse_args()
PRED_DIR = os.path.abspath(FLAGS.pred)
GT_DIR = os.path.abspath(FLAGS.gt)
print(PRED_DIR)
#NAME = FLAGS.name
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
print(GT_DIR)
print(os.path.join(GT_DIR,'*.xyz'))
gt_paths = glob(os.path.join(GT_DIR,'*.xyz'))
print(gt_paths)
gt_names = [os.path.basename(p)[:-4] for p in gt_paths]
print(len(gt_paths))
gt = load(gt_paths[0])[:, :3]
pred_placeholder = tf.placeholder(tf.float32, [1, gt.shape[0], 3])
gt_placeholder = tf.placeholder(tf.float32, [1, gt.shape[0], 3])
pred_tensor, centroid, furthest_distance = normalize_point_cloud(pred_placeholder)
gt_tensor, centroid, furthest_distance = normalize_point_cloud(gt_placeholder)
cd_forward, _, cd_backward, _ = tf_nndistance.nn_distance(pred_tensor, gt_tensor)
cd_forward = cd_forward[0, :]
cd_backward = cd_backward[0, :]
precentages = np.array([0.004, 0.006, 0.008, 0.01, 0.012])
def cal_nearest_distance(queries, pc, k=2):
"""
"""
knn_search = NearestNeighbors(n_neighbors=k, algorithm='auto')
knn_search.fit(pc)
dis,knn_idx = knn_search.kneighbors(queries, return_distance=True)
return dis[:,1]
def analyze_uniform(idx_file,radius_file,map_points_file):
start_time = time()
points = load(map_points_file)[:,4:]
radius = np.loadtxt(radius_file)
print('radius:',radius)
with open(idx_file) as f:
lines = f.readlines()
sample_number = 1000
rad_number = radius.shape[0]
uniform_measure = np.zeros([rad_number,1])
densitys = np.zeros([rad_number,sample_number])
expect_number = precentages * points.shape[0]
expect_number = np.reshape(expect_number, [rad_number, 1])
for j in range(rad_number):
uniform_dis = []
for i in range(sample_number):
density, idx = lines[i*rad_number+j].split(':')
densitys[j,i] = int(density)
coverage = np.square(densitys[j,i] - expect_number[j]) / expect_number[j]
num_points = re.findall("(\d+)", idx)
idx = list(map(int, num_points))
if len(idx) < 5:
continue
idx = np.array(idx).astype(np.int32)
map_point = points[idx]
shortest_dis = cal_nearest_distance(map_point,map_point,2)
disk_area = math.pi * (radius[j] ** 2) / map_point.shape[0]
expect_d = math.sqrt(2 * disk_area / 1.732)##using hexagon
dis = np.square(shortest_dis - expect_d) / expect_d
dis_mean = np.mean(dis)
uniform_dis.append(coverage*dis_mean)
uniform_dis = np.array(uniform_dis).astype(np.float32)
uniform_measure[j, 0] = np.mean(uniform_dis)
print('time cost for uniform :',time()-start_time)
return uniform_measure
with tf.Session() as sess:
fieldnames = ["name", "CD", "hausdorff", "p2f avg", "p2f std"]
fieldnames += ["uniform_%d" % d for d in range(precentages.shape[0])]
print("{:60s} ".format("name"), "|".join(["{:>15s}".format(d) for d in fieldnames[1:]]))
for D in [PRED_DIR]:
avg_md_forward_value = 0
avg_md_backward_value = 0
avg_hd_value = 0
avg_emd_value = 0
counter = 0
pred_paths = glob(os.path.join(D, "*.xyz"))
gt_pred_pairs = []
for p in pred_paths:
name, ext = os.path.splitext(os.path.basename(p))
assert(ext in (".ply", ".xyz"))
try:
gt = gt_paths[gt_names.index(name)]
except ValueError:
pass
else:
gt_pred_pairs.append((gt, p))
print(gt_pred_pairs)
print("total inputs ", len(gt_pred_pairs))
tag = re.search("/(\w+)/result", os.path.dirname(gt_pred_pairs[0][1]))
if tag:
tag = tag.groups()[0]
else:
tag = D
print("{:60s}".format(tag), end=' ')
global_p2f = []
global_density = []
global_uniform = []
with open(os.path.join(os.path.dirname(gt_pred_pairs[0][1]), "evaluation.csv"), "w") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames, restval="-", extrasaction="ignore")
writer.writeheader()
for gt_path, pred_path in gt_pred_pairs:
row = {}
gt = load(gt_path)[:, :3]
gt = gt[np.newaxis, ...]
pred = pc_util.load(pred_path)
pred = pred[:, :3]
row["name"] = os.path.basename(pred_path)
pred = pred[np.newaxis, ...]
cd_forward_value, cd_backward_value = sess.run([cd_forward, cd_backward], feed_dict={pred_placeholder:pred, gt_placeholder:gt})
#save_ply_property(np.squeeze(pred), cd_forward_value, pred_path[:-4]+"_cdF.ply", property_max=0.003, cmap_name="jet")
#save_ply_property(np.squeeze(gt), cd_backward_value, pred_path[:-4]+"_cdB.ply", property_max=0.003, cmap_name="jet")
md_value = np.mean(cd_forward_value)+np.mean(cd_backward_value)
hd_value = np.max(np.amax(cd_forward_value, axis=0)+np.amax(cd_backward_value, axis=0))
cd_backward_value = np.mean(cd_backward_value)
cd_forward_value = np.mean(cd_forward_value)
row["CD"] = cd_forward_value+cd_backward_value
row["hausdorff"] = hd_value
avg_md_forward_value += cd_forward_value
avg_md_backward_value += cd_backward_value
avg_hd_value += hd_value
if os.path.isfile(pred_path[:-4] + "_point2mesh_distance.txt"):
point2mesh_distance = load(pred_path[:-4] + "_point2mesh_distance.txt")
if point2mesh_distance.size == 0:
continue
point2mesh_distance = point2mesh_distance[:, 3]
row["p2f avg"] = np.nanmean(point2mesh_distance)
row["p2f std"] = np.nanstd(point2mesh_distance)
global_p2f.append(point2mesh_distance)
if os.path.isfile(pred_path[:-4] + "_disk_idx.txt"):
idx_file = pred_path[:-4] + "_disk_idx.txt"
radius_file = pred_path[:-4] + '_radius.txt'
map_points_file = pred_path[:-4] + '_point2mesh_distance.txt'
disk_measure = analyze_uniform(idx_file, radius_file, map_points_file)
global_uniform.append(disk_measure)
for i in range(precentages.shape[0]):
row["uniform_%d" % i] = disk_measure[i, 0]
writer.writerow(row)
counter += 1
row = OrderedDict()
avg_md_forward_value /= counter
avg_md_backward_value /= counter
avg_hd_value /= counter
avg_emd_value /= counter
avg_cd_value = avg_md_forward_value + avg_md_backward_value
row["CD"] = avg_cd_value
row["hausdorff"] = avg_hd_value
# row["EMD"] = avg_emd_value
if global_p2f:
global_p2f = np.concatenate(global_p2f, axis=0)
mean_p2f = np.nanmean(global_p2f)
std_p2f = np.nanstd(global_p2f)
row["p2f avg"] = mean_p2f
row["p2f std"] = std_p2f
if global_uniform:
global_uniform = np.array(global_uniform)
uniform_mean = np.mean(global_uniform, axis=0)
for i in range(precentages.shape[0]):
row["uniform_%d" % i] = uniform_mean[i, 0]
writer.writerow(row)
print("\t".join(["{:.8f}".format(d) for d in row.values()]))