forked from SleepyBag/Statistical-Learning-Methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prune.py
143 lines (132 loc) · 5 KB
/
prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
from pprint import pprint
from collections import Counter
from rich.console import Console
from rich.table import Table
import sys
import os
from pathlib import Path
sys.path.append(str(Path(os.path.abspath(__file__)).parent.parent))
from utils import *
from ID3 import ID3
def prune(root, X, Y, alpha=.0, verbose=True):
"""
prune a decision tree recursively. alpha is the weight of tree size in the loss function
reutrn the loss of all the leaf nodes
"""
# calculate the entropy of this subtree if the children of root is trimmed
pruned_entropy = len(X) * entropy(Counter(Y).values())
pruned_loss = pruned_entropy + alpha
# if root is a leaf node, return loss directly
if not root.children:
return pruned_loss
cur_loss = 0.
# trim child nodes recursively
for col_val in root.children:
child = root.children[col_val]
ind = [x[root.col] == col_val for x in X]
childX = [x for i, x in zip(ind, X) if i]
childY = [y for i, y in zip(ind, Y) if i]
cur_loss += prune(child, childX, childY, alpha, verbose)
# if pruned, return the pruned loss
if verbose:
pprint(X)
print('loss if prune:', pruned_loss)
print('current loss', cur_loss)
if pruned_loss < cur_loss:
root.children.clear()
return pruned_loss
# if not pruned, the loss of node root is the sum loss of all of its children
return cur_loss
if __name__ == "__main__":
console = Console(markup=False)
# -------------------------- Example 1 (Small Normalization Param) ------------
print("Example 1:")
id3 = ID3(verbose=False)
X = [
['青年', '否', '否', '一般'],
['青年', '否', '否', '好'],
['青年', '是', '否', '好'],
['青年', '是', '是', '一般'],
['青年', '否', '否', '一般'],
['老年', '否', '否', '一般'],
['老年', '否', '否', '好'],
['老年', '是', '是', '好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '好'],
['老年', '是', '否', '好'],
['老年', '是', '否', '非常好'],
['老年', '否', '否', '一般'],
]
Y = ['否', '否', '是', '是', '否', '否', '否', '是', '是', '是', '是', '是', '是', '是', '否']
id3.fit(X, Y)
# prune with alpha 0.
prune(id3.root, X, Y, 0.)
# show in table
pred = id3.predict(X)
table = Table('x', 'y', 'pred')
for x, y, y_hat in zip(X, Y, pred):
table.add_row(*map(str, [x, y, y_hat]))
console.print(table)
# -------------------------- Example 2 (Large Normalization Param) ------------
print("Example 2:")
id3 = ID3(verbose=False)
X = [
['青年', '否', '否', '一般'],
['青年', '否', '否', '好'],
['青年', '是', '否', '好'],
['青年', '是', '是', '一般'],
['青年', '否', '否', '一般'],
['老年', '否', '否', '一般'],
['老年', '否', '否', '好'],
['老年', '是', '是', '好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '好'],
['老年', '是', '否', '好'],
['老年', '是', '否', '非常好'],
['老年', '否', '否', '一般'],
]
Y = ['否', '否', '是', '是', '否', '否', '否', '是', '是', '是', '是', '是', '是', '是', '否']
id3.fit(X, Y)
# prune with large alpha
prune(id3.root, X, Y, 10000.)
# show in table
pred = id3.predict(X)
table = Table('x', 'y', 'pred')
for x, y, y_hat in zip(X, Y, pred):
table.add_row(*map(str, [x, y, y_hat]))
console.print(table)
# -------------------------- Example 3 (Midium Normalization Param) -----------
print("Example 3:")
id3 = ID3(verbose=False)
X = [
['青年', '否', '否', '一般'],
['青年', '否', '否', '好'],
['青年', '是', '否', '好'],
['青年', '是', '是', '一般'],
['青年', '否', '否', '一般'],
['老年', '否', '否', '一般'],
['老年', '否', '否', '好'],
['老年', '是', '是', '好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '好'],
['老年', '是', '否', '好'],
['老年', '是', '否', '非常好'],
['老年', '否', '否', '一般'],
]
Y = ['否', '否', '是', '是', '否', '否', '否', '是', '是', '是', '是', '是', '是', '是', '否']
id3.fit(X, Y)
# prune with medium alpha
prune(id3.root, X, Y, 5.)
# show in table
pred = id3.predict(X)
table = Table('x', 'y', 'pred')
for x, y, y_hat in zip(X, Y, pred):
table.add_row(*map(str, [x, y, y_hat]))
console.print(table)