forked from SleepyBag/Statistical-Learning-Methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
knn_kdtree.py
122 lines (108 loc) · 4.71 KB
/
knn_kdtree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
from rich.console import Console
from rich.table import Table
from functools import partial
import sys
import os
from pathlib import Path
sys.path.append(str(Path(os.path.abspath(__file__)).parent.parent))
from utils import *
class KDTree:
class Node:
def __init__(self, points, labels, axis):
self.points = points
self.labels = labels
self.axis = axis
self.left = None
self.right = None
def build(self, X, Y, split_axis=0):
if not len(X):
return None
median_ind = np.argpartition(X[:, split_axis], len(X) // 2, axis=0)[-1]
split_point = float(X[median_ind, split_axis])
equal_x = X[X[:, split_axis] == split_point]
equal_y = Y[X[:, split_axis] == split_point]
less_x = X[X[:, split_axis] < split_point]
less_y = Y[X[:, split_axis] < split_point]
greater_x = X[X[:, split_axis] > split_point]
greater_y = Y[X[:, split_axis] > split_point]
node = self.Node(equal_x, equal_y, split_axis)
node.left = self.build(less_x, less_y, 1 - split_axis)
node.right = self.build(greater_x, greater_y, 1 - split_axis)
return node
def _query(self, root, x, k):
if not root:
return Heap(max_len=k, key=lambda xy: -euc_dis(x, xy[0])), inf
mindis = inf
# Find the region that contains the target point
if x[root.axis] <= root.points[0][root.axis]:
ans, lmindis = self._query(root.left, x, k)
mindis = min(mindis, lmindis)
sibling = root.right
else:
ans, rmindis = self._query(root.right, x, k)
mindis = min(mindis, rmindis)
sibling = root.left
# All the points on the current splitting line are possible answers
for curx, cury in zip(root.points, root.labels):
mindis = min(euc_dis(curx, x), mindis)
ans.push((curx, cury))
# If the distance between the target point and the splitting line is
# shorter than the best answer up until, find the other tree
if mindis > abs(x[root.axis] - root.points[0][root.axis]):
other_ans, other_mindis = self._query(sibling, x, k)
mindis = min(mindis, other_mindis)
while other_ans:
otherx, othery = other_ans.pop()
ans.push((otherx, othery))
return ans, mindis
def query(self, x, k):
return self._query(self.root, x, k)[0]
def __init__(self, X, Y):
self.root = self.build(X, Y)
class KNN:
def __init__(self, k=1, distance_func="l2"):
self.k = k
if distance_func == 'l2':
self.distance_func = lambda x, y: np.linalg.norm(x - y)
else:
self.distance_func = distance_func
def _predict(self, x):
topk = self.tree.query(x, self.k)
topk_y = [y for x, y in topk]
return np.argmax(np.bincount(topk_y))
def fit(self, X, Y):
self.tree = KDTree(X, Y)
self.k = min(self.k, len(X))
def predict(self, X):
return np.apply_along_axis(self._predict, axis=-1, arr=X)
if __name__ == "__main__":
def demonstrate(X_train, Y_train, X_test, k, desc):
knn = KNN(k=k)
knn.fit(X_train, Y_train)
pred_test = knn.predict(X_test)
# plot
plt.scatter(X_train[:,0], X_train[:,1], c=Y_train, s=20)
plt.scatter(X_test[:,0], X_test[:,1], c=pred_test, marker=".", s=1)
plt.title(desc)
plt.show()
# -------------------------- Example 1 ----------------------------------------
X_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [.5, .5]])
Y_train = np.array([1, 2, 3, 4, 5])
# generate grid-shaped test data
X_test = np.concatenate(np.stack(np.meshgrid(np.linspace(-1, 2, 100), np.linspace(-1, 2, 100)), axis=-1))
demonstrate(X_train, Y_train, X_test, 1, "Example 1")
# -------------------------- Example 2 (Imbalanced Data) ------------------------
X_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [.5, .5]])
Y_train = np.array([1, 1, 2, 3, 4])
# generate grid-shaped test data
X_test = np.concatenate(np.stack(np.meshgrid(np.linspace(-1, 2, 100), np.linspace(-1, 2, 100)), axis=-1))
demonstrate(X_train, Y_train, X_test, 1, "Example 2")
# -------------------------- Example 3 (Imbalanced Data) ------------------------
X_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [.5, .5]])
Y_train = np.array([1, 1, 2, 2, 2])
# generate grid-shaped test data
X_test = np.concatenate(np.stack(np.meshgrid(np.linspace(-1, 2, 100), np.linspace(-1, 2, 100)), axis=-1))
demonstrate(X_train, Y_train, X_test, 1, "Example 3")