forked from akshay772/Crack_detection_metal_part
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CNNclassifier.py
82 lines (70 loc) · 2.94 KB
/
CNNclassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
np.random.seed(0)
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.preprocessing.image import ImageDataGenerator
from keras.models import model_from_json
import h5py
def training():
train_data_dir = './data/train'
validation_data_dir = './data/test'
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(512, 512, 3)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# the model so far outputs 3D feature maps (height, width, features)
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(BatchNormalization())
model.add(Activation('relu'))
# model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
batch_size = 16
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1./255)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1./255)
# this is a generator that will read pictures found in
# subfolers of 'data/train', and indefinitely generate
# batches of augmented image data
train_generator = train_datagen.flow_from_directory(
train_data_dir, # this is the target directory
target_size=(512, 512), # all images will be resized to 512x512
batch_size=batch_size,
class_mode='binary', # since we use binary_crossentropy loss, we need binary labels
shuffle=False)
# this is a similar generator, for validation data
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(512, 512),
batch_size=batch_size,
class_mode='binary',
shuffle=False)
model.fit_generator(
train_generator,
steps_per_epoch=320 // batch_size,
epochs=10,
validation_data=validation_generator,
validation_steps=80 // batch_size)
# save model to json
model_json = model.to_json()
with open("./models/model.json", "w") as json_file:
json_file.write(model_json)
model.save_weights('./models/first_try.h5') # always save your weights after training or during training
print("Saved model %s" % './models/first_try.h5')