Load models, randomly build scenes, render image data, compute grab labels, save data, data enhancement.
operating steps:
(1) Download obj_models.zip
from https://drive.google.com/file/d/1QLAubfa6nCkmRGeCZuy44lFfwKWobxVa/view?usp=drive_link
and unzip.
(2) Open scripts\dataset\render_grasp_data.py
, modify model_path
to path of obj_models, and modify save_path
to dataset path.
(3) run python scripts\dataset\render_grasp_data.py
.
(4) The dataset is divided into two parts: training set and test set.
(5) Open scripts\dataset\create_dataset.py
, modify src_path
to path of training set or test set, and modify dst_path
for training network.
(6) run python scripts\dataset\create_dataset.py
.
(1) Open scripts\dataset\visual_mask_bbox.py
, modify dataset_path
to dataset path
.
(2) run python scripts\dataset\visual_mask_bbox.py
(1) Download backbones.zip
from https://drive.google.com/file/d/19FaSnMmUCa8yjpkX-jgucA0D5wRsNWe0/view?usp=drive_link
and place files in grasp_methods\ckpt
.
(2) Open scripts\grasp_experiments\test_acc.py
, modify obj_model_path
to path of obj_models.
(3) run scripts\grasp_experiments\test_acc.py
(4) Open scripts\grasp_experiments\test_AP.py
, modify obj_model_path
to path of obj_models.
(5) run scripts\grasp_experiments\test_AP.py
Translate comments into English.