-
Notifications
You must be signed in to change notification settings - Fork 21
/
demo_smv_real.m
67 lines (57 loc) · 1.97 KB
/
demo_smv_real.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
% This demo shows the capability of recoverying REAL valued signals
% using the proposed algorithm : BSBL-FM
%
% author: [email protected]
% date: 2013-03-04
%
clear all; close all;
%==========================================================================
rng(1985,'v4');
% problem dimension
M = 128; % row number of the dictionary matrix
N = 256; % column number
blkNum = 5; % nonzero block number
blkLen = 16; % block length
iterNum= 1; % number of experiments (100)
% Generate the known matrix with columns draw uniformly from the surface of a unit hypersphere
Phi = randn(M,N);
for i=1:N
Phi(:,i) = Phi(:,i) / norm(Phi(:,i));
end
% load data
load demo.mat;
% prepare
Wgen = re;
% compressed the signal
signal = Phi * Wgen;
% Observation noise
SNR = 15;
stdnoise = std(signal)*10^(-SNR/20);
noise = randn(M,1) * stdnoise;
% Noisy observation
Y = signal + noise;
%=== BSBL-FM ==============================================================
blkStartLoc = 1:blkLen:N;
learnLambda = 1;
tic;
Result2 = BSBL_FM(Phi,Y,blkStartLoc,learnLambda,'learnType',2,'verbose',0);
t_fm2 = toc;
mse_fm2 = (norm(Wgen - Result2.x,'fro')/norm(Wgen,'fro'))^2;
%=== BSBL-FM ==============================================================
fprintf('BSBL-FM(learn correlation) : time: %4.3f, MSE: %g, Iter=%d\n',mean(t_fm2),mean(mse_fm2),Result2.count);
%=== draw(1)
figure(1)
clf;
subplot(121)
plot(Wgen,'b-','linewidth',2); hold on; grid on; axis tight
hx1 = xlabel('(a) Original Signal'); hy1 = ylabel('Amplitude');
ax1 = gca;
subplot(122)
plot(Result2.x,'b-','linewidth',2); hold on; grid on; axis tight
hx2 = xlabel('(b) Recover by BSBL-FM');
ax2 = gca;
%--- config ---
set(ax1, 'LooseInset', get(ax1, 'TightInset'));
set(ax2, 'LooseInset', get(ax2, 'TightInset'));
set([ax1 ax2 hl],'FontName','Times','FontSize',13);
set([hx1 hy1 hx2],'FontName','Times','FontSize',15,'FontWeight','bold');