-
Notifications
You must be signed in to change notification settings - Fork 0
/
retrieval.py
68 lines (49 loc) · 2.29 KB
/
retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import time
import faiss
import random
import torch
import itertools
from colbert.utils.runs import Run
from multiprocessing import Pool
from colbert.modeling.inference import ModelInference
from colbert.evaluation.ranking_logger import RankingLogger
from colbert.utils.utils import print_message, batch
from colbert.ranking.rankers import Ranker
def retrieve(args):
inference = ModelInference(args.colbert, amp=args.amp, debug=args.debug,
mask_method=args.mask_method, add_CLSQ_tokens=args.add_CLSQ_tokens,
nr_expansion_tokens=args.nr_expansion_tokens)
ranker = Ranker(args, inference, faiss_depth=args.faiss_depth)
ranking_logger = RankingLogger(Run.path, qrels=None)
milliseconds = 0
with ranking_logger.context(f'{args.index_name}.ranking.tsv', also_save_annotations=False) as rlogger:
queries = args.queries
qids_in_order = list(queries.keys())
if args.debug:
qids_in_order = qids_in_order[:10]
for qoffset, qbatch in batch(qids_in_order, 100, provide_offset=True):
qbatch_text = [queries[qid] for qid in qbatch]
rankings = []
for query_idx, q in enumerate(qbatch_text):
torch.cuda.synchronize('cuda:0')
s = time.time()
Q = ranker.encode([q], mask_method=args.mask_method)
pids, scores = ranker.rank(Q)
torch.cuda.synchronize()
milliseconds += (time.time() - s) * 1000.0
if len(pids):
print(qoffset+query_idx, q, len(scores), len(pids), scores[0], pids[0],
milliseconds / (qoffset+query_idx+1), 'ms')
rankings.append(zip(pids, scores))
for query_idx, (qid, ranking) in enumerate(zip(qbatch, rankings)):
query_idx = qoffset + query_idx
if query_idx % 100 == 0:
print_message(f"#> Logging query #{query_idx} (qid {qid}) now...")
ranking = [(score, pid, None) for pid, score in itertools.islice(ranking, args.depth)]
rlogger.log(qid, ranking, is_ranked=True)
print('\n\n')
print(ranking_logger.filename)
print("#> Done.")
print('\n\n')
return ranking_logger.filename