-
Notifications
You must be signed in to change notification settings - Fork 21
/
genai_video_eval.py
67 lines (56 loc) · 2.75 KB
/
genai_video_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Evaluate on GenAI-Bench-Video using a specific model
# Example scripts to run:
# VQAScore: python genai_video_eval.py --model clip-flant5-xxl
# CLIPScore: python genai_video_eval.py --model openai:ViT-L-14-336
import argparse
import os
import t2v_metrics
from dataset import GenAIBench_Video
import json
import torch
import numpy as np
from genai_image_eval import show_performance_per_skill
def config():
parser = argparse.ArgumentParser()
parser.add_argument("--root_dir", default="./datasets", type=str,
help='Root directory for saving datasets.')
parser.add_argument("--cache_dir", default=t2v_metrics.constants.HF_CACHE_DIR, type=str)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--batch_size", default=16, type=int)
parser.add_argument("--num_prompts", default=800, type=int, choices=[527, 800])
parser.add_argument("--model", default="clip-flant5-xxl", type=str)
parser.add_argument("--question", default=None, type=str)
parser.add_argument("--answer", default=None, type=str)
parser.add_argument("--result_dir", default="./genai_video_results", type=str)
parser.add_argument("--eval_mode", default="avg_frames", type=str)
return parser.parse_args()
def main():
args = config()
if not os.path.exists(args.root_dir):
os.makedirs(args.root_dir)
os.makedirs(args.result_dir, exist_ok=True)
result_path = f"{args.result_dir}/{args.model}_{args.eval_mode}_{args.num_prompts}_prompts.pt"
dataset = GenAIBench_Video(root_dir=args.root_dir, eval_mode=args.eval_mode, num_prompts=args.num_prompts)
if os.path.exists(result_path):
print(f"Result file {result_path} already exists. Skipping.")
scores = torch.load(result_path)
else:
score_func = t2v_metrics.get_score_model(model=args.model, device=args.device, cache_dir=args.cache_dir)
kwargs = {}
if args.question is not None:
print(f"Using question template: {args.question}")
kwargs['question_template'] = args.question
if args.answer is not None:
print(f"Using answer template: {args.answer}")
kwargs['answer_template'] = args.answer
print(f"Performance of {args.model} on using {args.eval_mode}.")
scores = score_func.batch_forward(dataset, batch_size=args.batch_size, **kwargs).cpu()
torch.save(scores, result_path)
### Get performance per skill
our_scores = scores.mean(axis=1)
show_performance_per_skill(our_scores, dataset, items_name='videos', prompt_to_items_name='prompt_to_videos', print_std=True)
print("Alignment Performance")
### Alignment performance
dataset.evaluate_scores(scores)
if __name__ == "__main__":
main()