diff --git a/examples/notebooks/beam-ml/README.md b/examples/notebooks/beam-ml/README.md
index f1c19747fc71..8f723c2c9149 100644
--- a/examples/notebooks/beam-ml/README.md
+++ b/examples/notebooks/beam-ml/README.md
@@ -56,6 +56,11 @@ This section contains the following example notebooks.
* [Use MLTransform to scale data](https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/data_preprocessing/scale_data.ipynb)
* [Preprocessing with the Apache Beam DataFrames API](https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/dataframe_api_preprocessing.ipynb)
+### Data enrichment
+
+* [Use Bigtable to enrich data](https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/bigtable_enrichment_transform.ipynb)
+* [Use Vertex AI Feature Store for feature enrichment](https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/vertex_ai_feature_store_enrichment.ipynb)
+
### Prediction and inference with pretrained models
* [Apache Beam RunInference for PyTorch](https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/run_inference_pytorch.ipynb)
diff --git a/examples/notebooks/beam-ml/vertex_ai_feature_store_enrichment.ipynb b/examples/notebooks/beam-ml/vertex_ai_feature_store_enrichment.ipynb
new file mode 100644
index 000000000000..c8ae558a1ba0
--- /dev/null
+++ b/examples/notebooks/beam-ml/vertex_ai_feature_store_enrichment.ipynb
@@ -0,0 +1,2502 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cellView": "form",
+ "id": "fFjof1NgAJwu"
+ },
+ "outputs": [],
+ "source": [
+ "# @title ###### Licensed to the Apache Software Foundation (ASF), Version 2.0 (the \"License\")\n",
+ "\n",
+ "# Licensed to the Apache Software Foundation (ASF) under one\n",
+ "# or more contributor license agreements. See the NOTICE file\n",
+ "# distributed with this work for additional information\n",
+ "# regarding copyright ownership. The ASF licenses this file\n",
+ "# to you under the Apache License, Version 2.0 (the\n",
+ "# \"License\"); you may not use this file except in compliance\n",
+ "# with the License. You may obtain a copy of the License at\n",
+ "#\n",
+ "# http://www.apache.org/licenses/LICENSE-2.0\n",
+ "#\n",
+ "# Unless required by applicable law or agreed to in writing,\n",
+ "# software distributed under the License is distributed on an\n",
+ "# \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY\n",
+ "# KIND, either express or implied. See the License for the\n",
+ "# specific language governing permissions and limitations\n",
+ "# under the License"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "A8xNRyZMW1yK"
+ },
+ "source": [
+ "# Use Apache Beam and Vertex AI Feature Store to enrich data\n",
+ "\n",
+ "
\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "HrCtxslBGK8Z"
+ },
+ "source": [
+ "This notebook shows how to enrich data by using the Apache Beam [enrichment transform](https://beam.apache.org/documentation/transforms/python/elementwise/enrichment/) with [Vertex AI Feature Store](https://cloud.google.com/vertex-ai/docs). The enrichment transform is a turnkey transform in Apache Beam that lets you enrich data using a key-value lookup. This transform has the following features:\n",
+ "\n",
+ "- The transform has a built-in Apache Beam handler that interacts with Vertex AI to get precomputed feature values.\n",
+ "- The transform uses client-side throttling to manage rate limiting the requests.\n",
+ "- Optionally, you can configure a Redis cache to improve efficiency.\n",
+ "\n",
+ "As of Apache Beam SDK version 2.55.0, [online feature serving](https://cloud.google.com/vertex-ai/docs/featurestore/latest/overview#online_serving) through Bigtable online serving and the Vertex AI Feature Store (legacy) method is supported. This notebook demonstrates how to use the Bigtable online serving approach with the enrichment transform in an Apache Beam pipeline."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ltn5zrBiGS9C"
+ },
+ "source": [
+ "This notebook demonstrates the following ecommerce product recommendation use case based on the BigQuery public dataset [theLook eCommerce](https://pantheon.corp.google.com/marketplace/product/bigquery-public-data/thelook-ecommerce):\n",
+ "\n",
+ "* Use a stream of online transactions from [Pub/Sub](https://cloud.google.com/pubsub/docs/guides) that contains the following fields: `product_id`, `user_id`, and `sale_price`.\n",
+ "* Deploy a pretrained model on Vertex AI based on the features `product_id`, `user_id`, `sale_price`, `age`, `gender`, `state`, and `country`.\n",
+ "* Precompute the feature values for the pretrained model, and store the values in the Vertex AI Feature Store.\n",
+ "* Enrich the stream of transactions from Pub/Sub with feature values from Vertex AI Feature Store by using the `Enrichment` transform.\n",
+ "* Send the enriched data to the Vertex AI model for online prediction by using the `RunInference` transform, which predicts the product recommendation for the user."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "gVCtGOKTHMm4"
+ },
+ "source": [
+ "## Before you begin\n",
+ "Set up your environment and download dependencies."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "YDHPlMjZRuY0"
+ },
+ "source": [
+ "### Install Apache Beam\n",
+ "To use the enrichment transform with the built-in Vertex AI handler, install the Apache Beam SDK version 2.55.0 or later."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true,
+ "id": "jBakpNZnAhqk"
+ },
+ "outputs": [],
+ "source": [
+ "!pip install apache_beam[interactive,gcp]==2.55.0 --quiet\n",
+ "!pip install redis\n",
+ "\n",
+ "# Use TensorFlow 2.13.0, because it is the latest version that has the prebuilt\n",
+ "# container image for Vertex AI model deployment.\n",
+ "# See https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers#tensorflow\n",
+ "!pip install tensorflow==2.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "SiJii48A2Rnb"
+ },
+ "outputs": [],
+ "source": [
+ "import json\n",
+ "import math\n",
+ "import os\n",
+ "import time\n",
+ "\n",
+ "from typing import Any\n",
+ "from typing import Dict\n",
+ "\n",
+ "import pandas as pd\n",
+ "from google.cloud import aiplatform\n",
+ "from google.cloud import pubsub_v1\n",
+ "from google.cloud import bigquery\n",
+ "from google.cloud import storage\n",
+ "from google.cloud.aiplatform_v1 import FeatureOnlineStoreAdminServiceClient\n",
+ "from google.cloud.aiplatform_v1 import FeatureRegistryServiceClient\n",
+ "from google.cloud.aiplatform_v1.types import feature_view as feature_view_pb2\n",
+ "from google.cloud.aiplatform_v1.types import \\\n",
+ " feature_online_store as feature_online_store_pb2\n",
+ "from google.cloud.aiplatform_v1.types import \\\n",
+ " feature_online_store_admin_service as \\\n",
+ " feature_online_store_admin_service_pb2\n",
+ "\n",
+ "import apache_beam as beam\n",
+ "import tensorflow as tf\n",
+ "import apache_beam.runners.interactive.interactive_beam as ib\n",
+ "from apache_beam.ml.inference.base import RunInference\n",
+ "from apache_beam.ml.inference.vertex_ai_inference import VertexAIModelHandlerJSON\n",
+ "from apache_beam.options import pipeline_options\n",
+ "from apache_beam.runners.interactive.interactive_runner import InteractiveRunner\n",
+ "from apache_beam.transforms.enrichment import Enrichment\n",
+ "from apache_beam.transforms.enrichment_handlers.vertex_ai_feature_store import VertexAIFeatureStoreEnrichmentHandler\n",
+ "from tensorflow import keras\n",
+ "from tensorflow.keras import layers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "X80jy3FqHjK4"
+ },
+ "source": [
+ "### Authenticate with Google Cloud\n",
+ "This notebook reads data from Pub/Sub and Vertex AI. To use your Google Cloud account, authenticate this notebook."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Kz9sccyGBqz3"
+ },
+ "outputs": [],
+ "source": [
+ "from google.colab import auth\n",
+ "auth.authenticate_user()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "nAmGgUMt48o9"
+ },
+ "source": [
+ "Replace `` and `` with the appropriate values for your Google Cloud account."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "wEXucyi2liij"
+ },
+ "outputs": [],
+ "source": [
+ "PROJECT_ID = \"\"\n",
+ "LOCATION = \"\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "RpqZFfFfA_Dt"
+ },
+ "source": [
+ "### Train and deploy the model to Vertex AI\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "8cUpV7mkB_xE"
+ },
+ "source": [
+ "Fetch the training data from the BigQuery public dataset [thelook-ecommerce](https://pantheon.corp.google.com/marketplace/product/bigquery-public-data/thelook-ecommerce)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "id": "TpxDHGObBEsj",
+ "outputId": "4f7afe32-a72b-40d3-b9ae-cc999ad104b8"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "train_data"
+ },
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " user_id | \n",
+ " product_id | \n",
+ " sale_price | \n",
+ " age | \n",
+ " gender | \n",
+ " state | \n",
+ " country | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 68717 | \n",
+ " 14235 | \n",
+ " 0.02 | \n",
+ " 43 | \n",
+ " f | \n",
+ " sachsen | \n",
+ " germany | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 59866 | \n",
+ " 28700 | \n",
+ " 1.50 | \n",
+ " 17 | \n",
+ " m | \n",
+ " chongqing | \n",
+ " china | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 38322 | \n",
+ " 14202 | \n",
+ " 1.50 | \n",
+ " 47 | \n",
+ " f | \n",
+ " missouri | \n",
+ " united states | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 7839 | \n",
+ " 28700 | \n",
+ " 1.50 | \n",
+ " 64 | \n",
+ " m | \n",
+ " mato grosso | \n",
+ " brasil | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 40877 | \n",
+ " 28700 | \n",
+ " 1.50 | \n",
+ " 68 | \n",
+ " m | \n",
+ " sergipe | \n",
+ " brasil | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ " user_id product_id sale_price age gender state country\n",
+ "0 68717 14235 0.02 43 f sachsen germany\n",
+ "1 59866 28700 1.50 17 m chongqing china\n",
+ "2 38322 14202 1.50 47 f missouri united states\n",
+ "3 7839 28700 1.50 64 m mato grosso brasil\n",
+ "4 40877 28700 1.50 68 m sergipe brasil"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "train_data_query = \"\"\"\n",
+ "WITH\n",
+ " order_items AS (\n",
+ " SELECT cast(user_id as string) AS user_id,\n",
+ " product_id,\n",
+ " sale_price,\n",
+ " FROM `bigquery-public-data.thelook_ecommerce.order_items`),\n",
+ " users AS (\n",
+ " SELECT cast(id as string) AS user_id,\n",
+ " age,\n",
+ " lower(gender) as gender,\n",
+ " lower(state) as state,\n",
+ " lower(country) as country,\n",
+ " FROM `bigquery-public-data.thelook_ecommerce.users`)\n",
+ "SELECT *\n",
+ "FROM order_items\n",
+ "LEFT OUTER JOIN users\n",
+ "USING (user_id)\n",
+ "\"\"\"\n",
+ "\n",
+ "client = bigquery.Client(project=PROJECT_ID)\n",
+ "train_data = client.query(train_data_query).result().to_dataframe()\n",
+ "train_data.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "OkYcJPC0THoV"
+ },
+ "source": [
+ "Create a prediction dataframe that contains the `product_id` to recommend to the user. Preprocess the data for columns that contain the categorical values."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "id": "ej6jCkMF0B29",
+ "outputId": "44cfd7f1-0c7c-40a8-813f-02af86a6f788"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "train_data"
+ },
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " user_id | \n",
+ " product_id | \n",
+ " sale_price | \n",
+ " age | \n",
+ " gender | \n",
+ " state | \n",
+ " country | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 68717 | \n",
+ " 14235 | \n",
+ " 0.02 | \n",
+ " 43 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 59866 | \n",
+ " 28700 | \n",
+ " 1.50 | \n",
+ " 17 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 38322 | \n",
+ " 14202 | \n",
+ " 1.50 | \n",
+ " 47 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 7839 | \n",
+ " 28700 | \n",
+ " 1.50 | \n",
+ " 64 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 40877 | \n",
+ " 28700 | \n",
+ " 1.50 | \n",
+ " 68 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ " user_id product_id sale_price age gender state country\n",
+ "0 68717 14235 0.02 43 0 0 0\n",
+ "1 59866 28700 1.50 17 1 1 1\n",
+ "2 38322 14202 1.50 47 0 2 2\n",
+ "3 7839 28700 1.50 64 1 3 3\n",
+ "4 40877 28700 1.50 68 1 4 3"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Create a prediction dataframe.\n",
+ "prediction_data = train_data['product_id'].sample(frac=1, replace=True)\n",
+ "\n",
+ "# Preprocess data to handle categorical values.\n",
+ "train_data['gender'] = pd.factorize(train_data['gender'])[0]\n",
+ "train_data['state'] = pd.factorize(train_data['state'])[0]\n",
+ "train_data['country'] = pd.factorize(train_data['country'])[0]\n",
+ "train_data.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7ffoopdQVk8W"
+ },
+ "source": [
+ "Convert the dataframe to tensors."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "vmHH26KDVkuf"
+ },
+ "outputs": [],
+ "source": [
+ "train_tensors = tf.convert_to_tensor(train_data.values, dtype=tf.float32)\n",
+ "prediction_tensors = tf.convert_to_tensor(prediction_data.values, dtype=tf.float32)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "CRoW8ElNV4I9"
+ },
+ "source": [
+ "Based on this data, build a basic neural network model by using TensorFlow."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "EKrb13wsV3m4"
+ },
+ "outputs": [],
+ "source": [
+ "inputs = layers.Input(shape=(7,))\n",
+ "x = layers.Dense(7, activation='relu')(inputs)\n",
+ "x = layers.Dense(14, activation='relu')(x)\n",
+ "outputs = layers.Dense(1)(x)\n",
+ "\n",
+ "model = keras.Model(inputs=inputs, outputs=outputs)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Duv4qzmEWFSZ"
+ },
+ "source": [
+ "Train the model. This step takes about 90 seconds for one epoch."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "bHg1kcvnk7Xb"
+ },
+ "outputs": [],
+ "source": [
+ "EPOCHS = 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "4GrDp5_WWGZv"
+ },
+ "outputs": [],
+ "source": [
+ "model.compile(optimizer='adam', loss='mse')\n",
+ "model.fit(train_tensors, prediction_tensors, epochs=EPOCHS)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "_rJYv8fFFPYb"
+ },
+ "source": [
+ "Save the model to the `MODEL_PATH` variable.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "W4t260o9FURP"
+ },
+ "outputs": [],
+ "source": [
+ "# Create a new directory to save the model.\n",
+ "!mkdir model\n",
+ "\n",
+ "# Save the model.\n",
+ "MODEL_PATH = './model/'\n",
+ "tf.saved_model.save(model, MODEL_PATH)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "hsJOxFTWj6JX"
+ },
+ "source": [
+ "Stage the locally saved model to a Google Cloud Storage bucket. Use this Cloud Storage bucket to deploy the model to Vertex AI. Replace `` with the name of your Cloud Storage bucket. Replace `` with the path to your Cloud Storage bucket."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "WQp1e_JgllBW"
+ },
+ "outputs": [],
+ "source": [
+ "GCS_BUCKET = ''\n",
+ "GCS_BUCKET_DIRECTORY = ''"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "yiXRXV89e8_Y"
+ },
+ "outputs": [],
+ "source": [
+ "# Stage to the Cloud Storage bucket.\n",
+ "import glob\n",
+ "from google.cloud import storage\n",
+ "client = storage.Client(project=PROJECT_ID)\n",
+ "bucket = client.bucket(GCS_BUCKET)\n",
+ "\n",
+ "def upload_model_to_gcs(model_path, bucket, gcs_model_dir):\n",
+ " for file in glob.glob(model_path + '/**', recursive=True):\n",
+ " if os.path.isfile(file):\n",
+ " path = os.path.join(gcs_model_dir, file[1 + len(model_path.rstrip(\"/\")):])\n",
+ " blob = bucket.blob(path)\n",
+ " blob.upload_from_filename(file)\n",
+ "\n",
+ "\n",
+ "upload_model_to_gcs(MODEL_PATH, bucket, GCS_BUCKET_DIRECTORY)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "O72h009kl_-L"
+ },
+ "source": [
+ "Upload the model saved in the Cloud Storage bucket to Vertex AI Model Registry."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "bKN5pUD3uImj"
+ },
+ "outputs": [],
+ "source": [
+ "model_display_name = 'vertex-ai-enrichment'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Pp3Jca9GfpEj"
+ },
+ "outputs": [],
+ "source": [
+ "aiplatform.init(project=PROJECT_ID, location=LOCATION)\n",
+ "model = aiplatform.Model.upload(\n",
+ " display_name = model_display_name,\n",
+ " description='Model used in the vertex ai enrichment notebook.',\n",
+ " artifact_uri=\"gs://\" + GCS_BUCKET + \"/\" + GCS_BUCKET_DIRECTORY,\n",
+ " serving_container_image_uri='us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-13:latest',\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ms_KqSIbZkLP"
+ },
+ "source": [
+ "Create an endpoint on Vertex AI."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "YKKzRrN6czni",
+ "outputId": "bfd954c0-8267-476d-dd0c-15e612ae0cc1"
+ },
+ "outputs": [],
+ "source": [
+ "endpoint = aiplatform.Endpoint.create(display_name = model_display_name,\n",
+ " project = PROJECT_ID,\n",
+ " location = LOCATION)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "WgSpy0J3oBFP"
+ },
+ "source": [
+ "Deploy the model to the Vertex AI endpoint.\n",
+ "\n",
+ "**Note:** This step is a Long Running Operation (LRO). Depending on the size of the model, it might take more than five minutes to complete."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "FLQtMVQjnsls"
+ },
+ "outputs": [],
+ "source": [
+ "deployed_model_display_name = 'vertexai-enrichment-notebook'\n",
+ "model.deploy(endpoint = endpoint,\n",
+ " deployed_model_display_name = deployed_model_display_name,\n",
+ " machine_type = 'n1-standard-2')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "3JjIwzZouAi5",
+ "outputId": "ffb1fb74-365a-426b-d60d-d3910c116e10"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "8125472293125095424\n"
+ ]
+ }
+ ],
+ "source": [
+ "model_endpoint_id = aiplatform.Endpoint.list(filter=f'display_name=\"{deployed_model_display_name}\"')[0].name\n",
+ "print(model_endpoint_id)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ouMQZ4sC4zuO"
+ },
+ "source": [
+ "### Set up the Vertex AI Feature Store for online serving\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "B1Bk7XP7190z"
+ },
+ "source": [
+ "Set up the feature data in BigQuery."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "id": "4Qkysu_g19c_",
+ "outputId": "187ee1e8-07c9-457a-abbe-fab724d997ce"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "summary": "{\n \"name\": \"data\",\n \"rows\": 100000,\n \"fields\": [\n {\n \"column\": \"user_id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 100000,\n \"samples\": [\n \"66192\",\n \"73109\",\n \"49397\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"Int64\",\n \"num_unique_values\": 59,\n \"samples\": [\n \"12\",\n \"17\",\n \"46\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"gender\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"1\",\n \"0\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"state\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 231,\n \"samples\": [\n \"218\",\n \"66\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"country\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 15,\n \"samples\": [\n \"9\",\n \"11\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
+ "type": "dataframe",
+ "variable_name": "data"
+ },
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " user_id | \n",
+ " age | \n",
+ " gender | \n",
+ " state | \n",
+ " country | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 7723 | \n",
+ " 12 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 93041 | \n",
+ " 12 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 45741 | \n",
+ " 12 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 16718 | \n",
+ " 12 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 70137 | \n",
+ " 12 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ " user_id age gender state country\n",
+ "0 7723 12 0 0 0\n",
+ "1 93041 12 0 1 1\n",
+ "2 45741 12 1 1 1\n",
+ "3 16718 12 0 1 1\n",
+ "4 70137 12 1 1 1"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "feature_store_query = \"\"\"\n",
+ "SELECT cast(id as string) AS user_id,\n",
+ " age,\n",
+ " lower(gender) as gender,\n",
+ " lower(state) as state,\n",
+ " lower(country) as country,\n",
+ "FROM `bigquery-public-data.thelook_ecommerce.users`\n",
+ "\"\"\"\n",
+ "\n",
+ "# Fetch feature values from BigQuery.\n",
+ "client = bigquery.Client(project=PROJECT_ID)\n",
+ "data = client.query(feature_store_query).result().to_dataframe()\n",
+ "\n",
+ "# Convert feature values to the string type. This step helps when creating tensors\n",
+ "# of these values for inference that requires the same data type.\n",
+ "data['gender'] = pd.factorize(data['gender'])[0]\n",
+ "data['gender'] = data['gender'].astype(str)\n",
+ "data['state'] = pd.factorize(data['state'])[0]\n",
+ "data['state'] = data['state'].astype(str)\n",
+ "data['country'] = pd.factorize(data['country'])[0]\n",
+ "data['country'] = data['country'].astype(str)\n",
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Mm-HCUaa3ROZ"
+ },
+ "source": [
+ "Create a BigQuery dataset to use as the source for the Vertex AI Feature Store."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "vye3UBGZ3Q8n",
+ "outputId": "437597af-837d-483e-8c1e-ebbe0eca81e0"
+ },
+ "outputs": [],
+ "source": [
+ "dataset_id = \"vertexai_enrichment\"\n",
+ "dataset = bigquery.Dataset(f\"{PROJECT_ID}.{dataset_id}\")\n",
+ "dataset.location = \"US\"\n",
+ "dataset = client.create_dataset(\n",
+ " dataset, exists_ok=True, timeout=30\n",
+ ")\n",
+ "\n",
+ "print(\"Created dataset - %s.%s\" % (dataset, dataset_id))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7lKiprPX4AZy"
+ },
+ "source": [
+ "Create a BigQuery view with the precomputed feature values."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "xqaLPTxb4DDF"
+ },
+ "outputs": [],
+ "source": [
+ "view_id = \"users_view\"\n",
+ "view_reference = \"%s.%s.%s\" % (PROJECT_ID, dataset_id, view_id)\n",
+ "view = bigquery.Table(view_reference)\n",
+ "view = client.load_table_from_dataframe(data, view_reference)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "eQLkSg3p7WAm"
+ },
+ "source": [
+ "Initialize clients for Vertex AI to create and set up an online store."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "GF_eIl-wVvRy"
+ },
+ "outputs": [],
+ "source": [
+ "API_ENDPOINT = f\"{LOCATION}-aiplatform.googleapis.com\"\n",
+ "\n",
+ "admin_client = FeatureOnlineStoreAdminServiceClient(\n",
+ " client_options={\"api_endpoint\": API_ENDPOINT}\n",
+ ")\n",
+ "registry_client = FeatureRegistryServiceClient(\n",
+ " client_options={\"api_endpoint\": API_ENDPOINT}\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "d9Mbk6m9Vgdo"
+ },
+ "source": [
+ "Create an online store instances on Vertex AI."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Zj-xEu_hWY7f",
+ "outputId": "7f4ed1d9-c0c4-4c3c-f199-1e340d2cff11"
+ },
+ "outputs": [],
+ "source": [
+ "feature_store_name = \"vertexai_enrichment\"\n",
+ "\n",
+ "online_store_config = feature_online_store_pb2.FeatureOnlineStore(\n",
+ " bigtable=feature_online_store_pb2.FeatureOnlineStore.Bigtable(\n",
+ " auto_scaling=feature_online_store_pb2.FeatureOnlineStore.Bigtable.AutoScaling(\n",
+ " min_node_count=1, max_node_count=1, cpu_utilization_target=80\n",
+ " )\n",
+ " )\n",
+ ")\n",
+ "\n",
+ "create_store_lro = admin_client.create_feature_online_store(\n",
+ " feature_online_store_admin_service_pb2.CreateFeatureOnlineStoreRequest(\n",
+ " parent=f\"projects/{PROJECT_ID}/locations/{LOCATION}\",\n",
+ " feature_online_store_id=feature_store_name,\n",
+ " feature_online_store=online_store_config,\n",
+ " )\n",
+ ")\n",
+ "\n",
+ "create_store_lro.result()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "DAHjWlqXXLU_"
+ },
+ "source": [
+ "For the store instances created previously, use BigQuery as the data source to create feature views."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "IhUERuRGXNaN",
+ "outputId": "84facd77-5be4-4c99-90b5-d8ccb4c5d702"
+ },
+ "outputs": [],
+ "source": [
+ "feature_view_name = \"users\"\n",
+ "\n",
+ "bigquery_source = feature_view_pb2.FeatureView.BigQuerySource(\n",
+ " uri=f\"bq://{view_reference}\", entity_id_columns=[\"user_id\"]\n",
+ ")\n",
+ "\n",
+ "create_view_lro = admin_client.create_feature_view(\n",
+ " feature_online_store_admin_service_pb2.CreateFeatureViewRequest(\n",
+ " parent=f\"projects/{PROJECT_ID}/locations/{LOCATION}/featureOnlineStores/{feature_store_name}\",\n",
+ " feature_view_id=feature_view_name,\n",
+ " feature_view=feature_view_pb2.FeatureView(\n",
+ " big_query_source=bigquery_source,\n",
+ " ),\n",
+ " )\n",
+ ")\n",
+ "\n",
+ "create_view_lro.result()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "qbf4l8eBX6NG"
+ },
+ "source": [
+ "Pull feature values from BigQuery into the feature store."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "gdpsLCmMX7fX"
+ },
+ "outputs": [],
+ "source": [
+ "sync_response = admin_client.sync_feature_view(\n",
+ " feature_view=f\"projects/{PROJECT_ID}/locations/{LOCATION}/featureOnlineStores/{feature_store_name}/featureViews/{feature_view_name}\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Lav6JTW4YKhR"
+ },
+ "outputs": [],
+ "source": [
+ "while True:\n",
+ " feature_view_sync = admin_client.get_feature_view_sync(\n",
+ " name=sync_response.feature_view_sync\n",
+ " )\n",
+ " if feature_view_sync.run_time.end_time.seconds > 0:\n",
+ " if feature_view_sync.final_status.code == 0\n",
+ " print(\"feature view sync completed for %s\" % feature_view_sync.name)\n",
+ " else:\n",
+ " print(\"feature view sync failed for %s\" % feature_view_sync.name)\n",
+ " break\n",
+ " time.sleep(10)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "T3MMx7oJYPeC"
+ },
+ "source": [
+ "Confirm the sync creation."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "ucSQRUfUYRFX",
+ "outputId": "d2160812-9874-40bb-f464-f797eafb9999"
+ },
+ "outputs": [],
+ "source": [
+ "admin_client.list_feature_view_syncs(\n",
+ " parent=f\"projects/{PROJECT_ID}/locations/{LOCATION}/featureOnlineStores/{feature_store_name}/featureViews/{feature_view_name}\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "pHODouJDwc60"
+ },
+ "source": [
+ "### Publish messages to Pub/Sub\n",
+ "\n",
+ "Use the Pub/Sub Python client to publish messages.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "QKCuwDioxw-f"
+ },
+ "outputs": [],
+ "source": [
+ "# Replace with the name of your Pub/Sub topic.\n",
+ "TOPIC = \" \"\n",
+ "\n",
+ "# Replace with the subscription path for your topic.\n",
+ "SUBSCRIPTION = \"\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "R0QYsOYFb_EU"
+ },
+ "source": [
+ "Retrieve sample data from a public dataset in BigQuery. Convert it into Python dictionaries, and then send it to Pub/Sub."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "id": "Kn7wmiKib-Wx",
+ "outputId": "9680fbcc-dcb5-4158-90ae-69a9f3c776d0"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "summary": "{\n \"name\": \"data\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"user_id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"62544\",\n \"16569\",\n \"17228\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"product_id\",\n \"properties\": {\n \"dtype\": \"Int64\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"14235\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sale_price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0199999995529651,\n \"max\": 0.0199999995529651,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0199999995529651\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
+ "type": "dataframe",
+ "variable_name": "data"
+ },
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " user_id | \n",
+ " product_id | \n",
+ " sale_price | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 25005 | \n",
+ " 14235 | \n",
+ " 0.02 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 62544 | \n",
+ " 14235 | \n",
+ " 0.02 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 17228 | \n",
+ " 14235 | \n",
+ " 0.02 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 54015 | \n",
+ " 14235 | \n",
+ " 0.02 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 16569 | \n",
+ " 14235 | \n",
+ " 0.02 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ " user_id product_id sale_price\n",
+ "0 25005 14235 0.02\n",
+ "1 62544 14235 0.02\n",
+ "2 17228 14235 0.02\n",
+ "3 54015 14235 0.02\n",
+ "4 16569 14235 0.02"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "read_query = \"\"\"\n",
+ "SELECT cast(user_id as string) AS user_id,\n",
+ " product_id,\n",
+ " sale_price,\n",
+ "FROM `bigquery-public-data.thelook_ecommerce.order_items`\n",
+ "LIMIT 5;\n",
+ "\"\"\"\n",
+ "\n",
+ "client = bigquery.Client(project=PROJECT_ID)\n",
+ "data = client.query(read_query).result().to_dataframe()\n",
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "MaCJwaPexPKZ"
+ },
+ "outputs": [],
+ "source": [
+ "messages = data.to_dict(orient='records')\n",
+ "\n",
+ "publisher = pubsub_v1.PublisherClient()\n",
+ "topic_name = publisher.topic_path(PROJECT_ID, TOPIC)\n",
+ "subscription_path = publisher.subscription_path(PROJECT_ID, SUBSCRIPTION)\n",
+ "for message in messages:\n",
+ " data = json.dumps(message).encode('utf-8')\n",
+ " publish_future = publisher.publish(topic_name, data)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "zPSFEMm02omi"
+ },
+ "source": [
+ "## Use the Vertex AI Feature Store enrichment handler\n",
+ "\n",
+ "The [`VertexAIFeatureStoreEnrichmentHandler`](https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.enrichment_handlers.vertex_ai_feature_store.html#apache_beam.transforms.enrichment_handlers.vertex_ai_feature_store.VertexAIFeatureStoreEnrichmentHandler) is a built-in handler included in the Apache Beam SDK versions 2.55.0 and later."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "K41xhvmA5yQk"
+ },
+ "source": [
+ "Configure the `VertexAIFeatureStoreEnrichmentHandler` with the following required parameters:\n",
+ "\n",
+ "* `project`: the Google Cloud project ID for the feature store\n",
+ "* `location`: the region of the feature store, for example `us-central1`\n",
+ "* `api_endpoint`: the public endpoint of the feature store\n",
+ "* `feature_store_name`: the name of the Vertex AI Feature Store\n",
+ "* `feature_view_name`: the name of the feature view within the Vertex AI Feature Store\n",
+ "* `row_key`: The field name in the input row containing the entity ID for the feature store. This value is used to extract the entity ID from each element. The entity ID is used to fetch feature values for that specific element in the enrichment transform.\n",
+ "\n",
+ "Optionally, to provide more configuration values to connect with the Vertex AI client, the `VertexAIFeatureStoreEnrichmentHandler` accepts a keyword argument (kwargs). For more information, see [`FeatureOnlineStoreServiceClient`](https://cloud.google.com/php/docs/reference/cloud-ai-platform/latest/V1.FeatureOnlineStoreServiceClient).\n",
+ "\n",
+ "**Note:** When exceptions occur, by default, the logging severity is set to warning ([`ExceptionLevel.WARN`](https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.enrichment_handlers.utils.html#apache_beam.transforms.enrichment_handlers.utils.ExceptionLevel.WARN)). To configure the severity to raise exceptions, set `exception_level` to [`ExceptionLevel.RAISE`](https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.enrichment_handlers.utils.html#apache_beam.transforms.enrichment_handlers.utils.ExceptionLevel.RAISE). To ignore exceptions, set `exception_level` to [`ExceptionLevel.QUIET`](https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.enrichment_handlers.utils.html#apache_beam.transforms.enrichment_handlers.utils.ExceptionLevel.QUIET).\n",
+ "\n",
+ "The `VertexAIFeatureStoreEnrichmentHandler` handler returns the latest feature values from the feature store."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "3dB26jhI45gd"
+ },
+ "outputs": [],
+ "source": [
+ "row_key = 'user_id'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "cr1j_DHK4gA4"
+ },
+ "outputs": [],
+ "source": [
+ "vertex_ai_handler = VertexAIFeatureStoreEnrichmentHandler(project=PROJECT_ID,\n",
+ " location=LOCATION,\n",
+ " api_endpoint = API_ENDPOINT,\n",
+ " feature_store_name=feature_store_name,\n",
+ " feature_view_name=feature_view_name,\n",
+ " row_key=row_key)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "-Lvo8O2V-0Ey"
+ },
+ "source": [
+ "## Use the enrichment transform\n",
+ "\n",
+ "To use the [enrichment transform](https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.enrichment.html#apache_beam.transforms.enrichment.Enrichment), the [`EnrichmentHandler`](https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.enrichment.html#apache_beam.transforms.enrichment.EnrichmentSourceHandler) parameter is required. You can also use a configuration parameter to specify a `lambda` for a join function, a timeout, a throttler, and a repeater (retry strategy).\n",
+ "\n",
+ "\n",
+ "* `join_fn`: A lambda function that takes dictionaries as input and returns an enriched row (`Callable[[Dict[str, Any], Dict[str, Any]], beam.Row]`). The enriched row specifies how to join the data fetched from the API. Defaults to a [cross-join](https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.enrichment.html#apache_beam.transforms.enrichment.cross_join).\n",
+ "* `timeout`: The number of seconds to wait for the request to be completed by the API before timing out. Defaults to 30 seconds.\n",
+ "* `throttler`: Specifies the throttling mechanism. The only supported option is default client-side adaptive throttling.\n",
+ "* `repeater`: Specifies the retry strategy when errors like `TooManyRequests` and `TimeoutException` occur. Defaults to [`ExponentialBackOffRepeater`](https://beam.apache.org/releases/pydoc/current/apache_beam.io.requestresponse.html#apache_beam.io.requestresponse.ExponentialBackOffRepeater).\n",
+ "\n",
+ "\n",
+ "To use the Redis cache, apply the `with_redis_cache` hook to the enrichment transform. The coders for encoding and decoding the input and output for the cache are optional and are internally inferred."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xJTCfSmiV1kv"
+ },
+ "source": [
+ "The following example demonstrates the code needed to add this transform to your pipeline.\n",
+ "\n",
+ "\n",
+ "```\n",
+ "with beam.Pipeline() as p:\n",
+ " output = (p\n",
+ " ...\n",
+ " | \"Enrich with Vertex AI\" >> Enrichment(vertex_ai_handler)\n",
+ " | \"RunInference\" >> RunInference(model_handler)\n",
+ " ...\n",
+ " )\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "F-xjiP_pHWZr"
+ },
+ "source": [
+ "To make a prediction, use the following fields: `product_id`, `quantity`, `price`, `customer_id`, and `customer_location`. Retrieve the value of the `customer_location` field from Bigtable.\n",
+ "\n",
+ "The enrichment transform performs a [`cross_join`](https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.enrichment.html#apache_beam.transforms.enrichment.cross_join) by default."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "CX9Cqybu6scV"
+ },
+ "source": [
+ "## Use the `VertexAIModelHandlerJSON` interface to run inference\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "zy5Jl7_gLklX"
+ },
+ "source": [
+ "Because the enrichment transform outputs data in the format `beam.Row`, in order to align it with the [`VertexAIModelHandlerJSON`](https://beam.apache.org/releases/pydoc/current/apache_beam.ml.inference.vertex_ai_inference.html#apache_beam.ml.inference.vertex_ai_inference.VertexAIModelHandlerJSON) interface, convert the output into a list of `tensorflow.tensor`. Some enriched fields are of `string` type. For tensor creation, all values must be of the same type. Therefore, convert any `string` type fields to `int` type fields before creating a tensor."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "KBKoB06nL4LF"
+ },
+ "outputs": [],
+ "source": [
+ "def convert_row_to_tensor(element: beam.Row):\n",
+ " element_dict = element._asdict()\n",
+ " row = list(element_dict.values())\n",
+ " for i, r in enumerate(row):\n",
+ " if isinstance(r, str):\n",
+ " row[i] = int(r)\n",
+ " return tf.convert_to_tensor(row, dtype=tf.float32).numpy().tolist()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "-tGHyB_vL3rJ"
+ },
+ "source": [
+ "Initialize the model handler with the preprocessing function."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "VqUUEwcU-r2e"
+ },
+ "outputs": [],
+ "source": [
+ "model_handler = VertexAIModelHandlerJSON(endpoint_id=model_endpoint_id,\n",
+ " project=PROJECT_ID,\n",
+ " location=LOCATION,\n",
+ " ).with_preprocess_fn(convert_row_to_tensor)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "vNHI4gVgNec2"
+ },
+ "source": [
+ "Define a `DoFn` to format the output."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "rkN-_Yf4Nlwy"
+ },
+ "outputs": [],
+ "source": [
+ "class PostProcessor(beam.DoFn):\n",
+ " def process(self, element, *args, **kwargs):\n",
+ " print('Customer %d who bought product %d is recommended to buy product %d' % (element.example[0], element.example[1], math.ceil(element.inference[0])))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "0a1zerXycQ0z"
+ },
+ "source": [
+ "## Run the pipeline\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "WrwY0_gV_IDK"
+ },
+ "source": [
+ "Configure the pipeline to run in streaming mode."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "t0425sYBsYtB"
+ },
+ "outputs": [],
+ "source": [
+ "options = pipeline_options.PipelineOptions()\n",
+ "options.view_as(pipeline_options.StandardOptions).streaming = True # Streaming mode is set to True"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "DBNijQDY_dRe"
+ },
+ "source": [
+ "Pub/Sub sends the data in bytes. Convert the data to `beam.Row` objects by using a `DoFn`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "sRw9iL8pKP5O"
+ },
+ "outputs": [],
+ "source": [
+ "class DecodeBytes(beam.DoFn):\n",
+ " \"\"\"\n",
+ " The DecodeBytes `DoFn` converts the data read from Pub/Sub to `beam.Row`.\n",
+ " First, decode the encoded string. Convert the output to\n",
+ " a `dict` with `json.loads()`, which is used to create a `beam.Row`.\n",
+ " \"\"\"\n",
+ " def process(self, element, *args, **kwargs):\n",
+ " element_dict = json.loads(element.decode('utf-8'))\n",
+ " yield beam.Row(**element_dict)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xofUJym-_GuB"
+ },
+ "source": [
+ "Use the following code to run the pipeline.\n",
+ "\n",
+ "**Note:** Because this pipeline is a streaming pipeline, you need to manually stop the cell. If you don't stop the cell, the pipeline continues to run."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 671
+ },
+ "id": "St07XoibcQSb",
+ "outputId": "0ca70756-6a69-4d63-9ab7-8814ae6adf05"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Customer 25005 who bought product 14235 is recommended to buy product 8944\n",
+ "Customer 62544 who bought product 14235 is recommended to buy product 23313\n",
+ "Customer 17228 who bought product 14235 is recommended to buy product 6600\n",
+ "Customer 54015 who bought product 14235 is recommended to buy product 19682\n",
+ "Customer 16569 who bought product 14235 is recommended to buy product 6441\n"
+ ]
+ }
+ ],
+ "source": [
+ "with beam.Pipeline(options=options) as p:\n",
+ " _ = (p\n",
+ " | \"Read from Pub/Sub\" >> beam.io.ReadFromPubSub(subscription=subscription_path)\n",
+ " | \"ConvertToRow\" >> beam.ParDo(DecodeBytes())\n",
+ " | \"Enrichment\" >> Enrichment(vertex_ai_handler)\n",
+ " | \"RunInference\" >> RunInference(model_handler)\n",
+ " | \"Format Output\" >> beam.ParDo(PostProcessor())\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "yDjkq2VI7fuM"
+ },
+ "source": [
+ "## Clean up resources"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "UiPb_kzv7pCu",
+ "outputId": "7902c30f-4db0-431b-9dd8-b647b3cb34da"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Delete feature views.\n",
+ "admin_client.delete_feature_view(\n",
+ " name=f\"projects/{PROJECT_ID}/locations/{LOCATION}/featureOnlineStores/{feature_store_name}/featureViews/{feature_view_name}\"\n",
+ ")\n",
+ "\n",
+ "# Delete online store instance.\n",
+ "admin_client.delete_feature_online_store(\n",
+ " name=f\"projects/{PROJECT_ID}/locations/{LOCATION}/featureOnlineStores/{feature_store_name}\",\n",
+ " force=True,\n",
+ ")"
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}