forked from hajimehoshi/ebiten
-
Notifications
You must be signed in to change notification settings - Fork 0
/
geom.go
220 lines (193 loc) · 4.76 KB
/
geom.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Copyright 2014 Hajime Hoshi
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ebiten
import (
"fmt"
"math"
)
// GeoMDim is a dimension of a GeoM.
const GeoMDim = 3
// A GeoM represents a matrix to transform geometry when rendering an image.
//
// The initial value is identity.
type GeoM struct {
a_1 float64 // The actual 'a' value minus 1
b float64
c float64
d_1 float64 // The actual 'd' value minus 1
tx float64
ty float64
}
// String returns a string representation of GeoM.
func (g *GeoM) String() string {
return fmt.Sprintf("[[%f, %f, %f], [%f, %f, %f]]", g.a_1+1, g.b, g.tx, g.c, g.d_1+1, g.ty)
}
// Reset resets the GeoM as identity.
func (g *GeoM) Reset() {
g.a_1 = 0
g.b = 0
g.c = 0
g.d_1 = 0
g.tx = 0
g.ty = 0
}
// Apply pre-multiplies a vector (x, y, 1) by the matrix.
// In other words, Apply calculates GeoM * (x, y, 1)^T.
// The return value is x and y values of the result vector.
func (g *GeoM) Apply(x, y float64) (float64, float64) {
return (g.a_1+1)*x + g.b*y + g.tx, g.c*x + (g.d_1+1)*y + g.ty
}
func (g *GeoM) elements32() (a, b, c, d, tx, ty float32) {
return float32(g.a_1) + 1, float32(g.b), float32(g.c), float32(g.d_1) + 1, float32(g.tx), float32(g.ty)
}
// Element returns a value of a matrix at (i, j).
func (g *GeoM) Element(i, j int) float64 {
switch {
case i == 0 && j == 0:
return g.a_1 + 1
case i == 0 && j == 1:
return g.b
case i == 0 && j == 2:
return g.tx
case i == 1 && j == 0:
return g.c
case i == 1 && j == 1:
return g.d_1 + 1
case i == 1 && j == 2:
return g.ty
default:
panic("ebiten: i or j is out of index")
}
}
// Concat multiplies a geometry matrix with the other geometry matrix.
// This is same as muptiplying the matrix other and the matrix g in this order.
func (g *GeoM) Concat(other GeoM) {
a := (other.a_1+1)*(g.a_1+1) + other.b*g.c
b := (other.a_1+1)*g.b + other.b*(g.d_1+1)
tx := (other.a_1+1)*g.tx + other.b*g.ty + other.tx
c := other.c*(g.a_1+1) + (other.d_1+1)*g.c
d := other.c*g.b + (other.d_1+1)*(g.d_1+1)
ty := other.c*g.tx + (other.d_1+1)*g.ty + other.ty
g.a_1 = a - 1
g.b = b
g.c = c
g.d_1 = d - 1
g.tx = tx
g.ty = ty
}
// Scale scales the matrix by (x, y).
func (g *GeoM) Scale(x, y float64) {
a := (g.a_1 + 1) * x
b := g.b * x
tx := g.tx * x
c := g.c * y
d := (g.d_1 + 1) * y
ty := g.ty * y
g.a_1 = a - 1
g.b = b
g.c = c
g.d_1 = d - 1
g.tx = tx
g.ty = ty
}
// Translate translates the matrix by (tx, ty).
func (g *GeoM) Translate(tx, ty float64) {
g.tx += tx
g.ty += ty
}
// Rotate rotates the matrix by theta.
// The unit is radian.
func (g *GeoM) Rotate(theta float64) {
if theta == 0 {
return
}
sin, cos := math.Sincos(theta)
a := cos*(g.a_1+1) - sin*g.c
b := cos*g.b - sin*(g.d_1+1)
tx := cos*g.tx - sin*g.ty
c := sin*(g.a_1+1) + cos*g.c
d := sin*g.b + cos*(g.d_1+1)
ty := sin*g.tx + cos*g.ty
g.a_1 = a - 1
g.b = b
g.c = c
g.d_1 = d - 1
g.tx = tx
g.ty = ty
}
// Skew skews the matrix by (skewX, skewY). The unit is radian.
func (g *GeoM) Skew(skewX, skewY float64) {
sx := math.Tan(skewX)
sy := math.Tan(skewY)
a := (g.a_1 + 1) + g.c*sx
b := g.b + (g.d_1+1)*sx
c := (g.a_1+1)*sy + g.c
d := g.b*sy + (g.d_1 + 1)
tx := g.tx + g.ty*sx
ty := g.ty + g.tx*sy
g.a_1 = a - 1
g.b = b
g.c = c
g.d_1 = d - 1
g.tx = tx
g.ty = ty
}
func (g *GeoM) det2x2() float64 {
return (g.a_1+1)*(g.d_1+1) - g.b*g.c
}
// IsInvertible returns a boolean value indicating
// whether the matrix g is invertible or not.
func (g *GeoM) IsInvertible() bool {
return g.det2x2() != 0
}
// Invert inverts the matrix.
// If g is not invertible, Invert panics.
func (g *GeoM) Invert() {
det := g.det2x2()
if det == 0 {
panic("ebiten: g is not invertible")
}
a := (g.d_1 + 1) / det
b := -g.b / det
c := -g.c / det
d := (g.a_1 + 1) / det
tx := (-(g.d_1+1)*g.tx + g.b*g.ty) / det
ty := (g.c*g.tx + -(g.a_1+1)*g.ty) / det
g.a_1 = a - 1
g.b = b
g.c = c
g.d_1 = d - 1
g.tx = tx
g.ty = ty
}
// SetElement sets an element at (i, j).
func (g *GeoM) SetElement(i, j int, element float64) {
e := element
switch {
case i == 0 && j == 0:
g.a_1 = e - 1
case i == 0 && j == 1:
g.b = e
case i == 0 && j == 2:
g.tx = e
case i == 1 && j == 0:
g.c = e
case i == 1 && j == 1:
g.d_1 = e - 1
case i == 1 && j == 2:
g.ty = e
default:
panic("ebiten: i or j is out of index")
}
}