forked from andrew-j-levy/Hierarchical-Actor-Critc-HAC-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
critic.py
152 lines (115 loc) · 6.04 KB
/
critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
from utils import layer
class Critic():
def __init__(self, sess, env, layer_number, FLAGS, learning_rate=0.001, gamma=0.98, tau=0.05):
self.sess = sess
self.critic_name = 'critic_' + str(layer_number)
self.learning_rate = learning_rate
self.gamma = gamma
self.tau = tau
self.q_limit = -FLAGS.time_scale
# Dimensions of goal placeholder will differ depending on layer level
if layer_number == FLAGS.layers - 1:
self.goal_dim = env.end_goal_dim
else:
self.goal_dim = env.subgoal_dim
self.loss_val = 0
self.state_dim = env.state_dim
self.state_ph = tf.placeholder(tf.float32, shape=(None, env.state_dim), name='state_ph')
self.goal_ph = tf.placeholder(tf.float32, shape=(None, self.goal_dim))
# Dimensions of action placeholder will differ depending on layer level
if layer_number == 0:
action_dim = env.action_dim
else:
action_dim = env.subgoal_dim
self.action_ph = tf.placeholder(tf.float32, shape=(None, action_dim), name='action_ph')
self.features_ph = tf.concat([self.state_ph, self.goal_ph, self.action_ph], axis=1)
# Set parameters to give critic optimistic initialization near q_init
self.q_init = -0.067
self.q_offset = -np.log(self.q_limit/self.q_init - 1)
# Create critic network graph
self.infer = self.create_nn(self.features_ph)
self.weights = [v for v in tf.trainable_variables() if self.critic_name in v.op.name]
# Create target critic network graph. Please note that by default the critic networks are not used and updated. To use critic networks please follow instructions in the "update" method in this file and the "learn" method in the "layer.py" file.
# Target network code "repurposed" from Patrick Emani :^)
self.target = self.create_nn(self.features_ph, name = self.critic_name + '_target')
self.target_weights = [v for v in tf.trainable_variables() if self.critic_name in v.op.name][len(self.weights):]
self.update_target_weights = \
[self.target_weights[i].assign(tf.multiply(self.weights[i], self.tau) +
tf.multiply(self.target_weights[i], 1. - self.tau))
for i in range(len(self.target_weights))]
self.wanted_qs = tf.placeholder(tf.float32, shape=(None, 1))
self.loss = tf.reduce_mean(tf.square(self.wanted_qs - self.infer))
self.train = tf.train.AdamOptimizer(learning_rate).minimize(self.loss)
self.gradient = tf.gradients(self.infer, self.action_ph)
def get_Q_value(self,state, goal, action):
return self.sess.run(self.infer,
feed_dict={
self.state_ph: state,
self.goal_ph: goal,
self.action_ph: action
})[0]
def get_target_Q_value(self,state, goal, action):
return self.sess.run(self.target,
feed_dict={
self.state_ph: state,
self.goal_ph: goal,
self.action_ph: action
})[0]
def update(self, old_states, old_actions, rewards, new_states, goals, new_actions, is_terminals):
# Be default, repo does not use target networks. To use target networks, comment out "wanted_qs" line directly below and uncomment next "wanted_qs" line. This will let the Bellman update use Q(next state, action) from target Q network instead of the regular Q network. Make sure you also make the updates specified in the "learn" method in the "layer.py" file.
wanted_qs = self.sess.run(self.infer,
feed_dict={
self.state_ph: new_states,
self.goal_ph: goals,
self.action_ph: new_actions
})
"""
# Uncomment to use target networks
wanted_qs = self.sess.run(self.target,
feed_dict={
self.state_ph: new_states,
self.goal_ph: goals,
self.action_ph: new_actions
})
"""
for i in range(len(wanted_qs)):
if is_terminals[i]:
wanted_qs[i] = rewards[i]
else:
wanted_qs[i] = rewards[i] + self.gamma * wanted_qs[i][0]
# Ensure Q target is within bounds [-self.time_limit,0]
wanted_qs[i] = max(min(wanted_qs[i],0), self.q_limit)
assert wanted_qs[i] <= 0 and wanted_qs[i] >= self.q_limit, "Q-Value target not within proper bounds"
self.loss_val, _ = self.sess.run([self.loss, self.train],
feed_dict={
self.state_ph: old_states,
self.goal_ph: goals,
self.action_ph: old_actions,
self.wanted_qs: wanted_qs
})
def get_gradients(self, state, goal, action):
grads = self.sess.run(self.gradient,
feed_dict={
self.state_ph: state,
self.goal_ph: goal,
self.action_ph: action
})
return grads[0]
# Function creates the graph for the critic function. The output uses a sigmoid, which bounds the Q-values to between [-Policy Length, 0].
def create_nn(self, features, name=None):
if name is None:
name = self.critic_name
with tf.variable_scope(name + '_fc_1'):
fc1 = layer(features, 64)
with tf.variable_scope(name + '_fc_2'):
fc2 = layer(fc1, 64)
with tf.variable_scope(name + '_fc_3'):
fc3 = layer(fc2, 64)
with tf.variable_scope(name + '_fc_4'):
fc4 = layer(fc3, 1, is_output=True)
# A q_offset is used to give the critic function an optimistic initialization near 0
output = tf.sigmoid(fc4 + self.q_offset) * self.q_limit
return output