From d708854809b3a83b8b210db77986b391a754cefe Mon Sep 17 00:00:00 2001 From: k32 <10274441+k32@users.noreply.github.com> Date: Sun, 14 Apr 2024 14:25:32 +0200 Subject: [PATCH] Clarified some definitions related to transition systems --- theories/Foundations.v | 291 ++++++++++++++++++++--------------------- 1 file changed, 142 insertions(+), 149 deletions(-) diff --git a/theories/Foundations.v b/theories/Foundations.v index d13f9a5..c3eb026 100644 --- a/theories/Foundations.v +++ b/theories/Foundations.v @@ -34,6 +34,12 @@ Declare Scope slot_scope. Open Scope slot_scope. (* end hide *) +(* begin hide *) +Global Arguments In {_}. +Global Arguments Complement {_}. +Global Arguments Disjoint {_}. +(* end hide *) + Section transition_system. Context {State Label Result : Type}. @@ -51,125 +57,53 @@ Global Arguments TransitionSystem (_ _ _) : clear implicits. Notation "A '~[' L ']~>' S" := (A (fut_cont L S)) (at level 20) : slot_scope. Notation "A '~|' R" := (A (fut_result R)) (at level 20) : slot_scope. -Section trans_prod. - (* Product of transition systems: *) - Context {Label S1 S2 R1 R2 : Type} - `{T1 : TransitionSystem S1 Label R1} `{T2 : TransitionSystem S2 Label R2}. - - Let State : Type := S1 * S2. - - Inductive TransProdResult := - | tpr_l : forall (result_left : R1) (state_right : S2), TransProdResult - | tpr_r : forall (state_left : S1) (result_right : R2), TransProdResult. - - Inductive TransProdFuture : State -> @Future State Label TransProdResult -> Prop := - | tpf_cc : forall (label : Label) (s1 s1' : S1) (s2 s2' : S2), - future s1 ~[label]~> s1' -> - future s2 ~[label]~> s2' -> - TransProdFuture (s1, s2) ~[label]~> (s1', s2') - | tpf_rc : forall s1 s2 r, - future s1 ~| r -> - TransProdFuture (s1, s2) ~| (tpr_l r s2) - | tpf_cr : forall s1 s2 r, - future s2 ~| r -> - TransProdFuture (s1, s2) ~| (tpr_r s1 r). - - Instance transProd : @TransitionSystem State Label TransProdResult := - { future := TransProdFuture }. -End trans_prod. - -Global Arguments transProd {_ _ _ _ _} (_ _). - -Infix "<*>" := (transProd) (at level 98) : slot_scope. - -Section trans_sum. - (* Sum of transition systems: *) - Context {S1 L1 R1 S2 L2 R2} `{T1 : TransitionSystem S1 L1 R1} `{T2 : TransitionSystem S2 L2 R2}. - - Let State : Type := S1 * S2. - - Let Label : Type := L1 + L2. - - Let Result : Type := R1 * R2. - - Inductive TransSumFuture : State -> @Future State Label Result -> Prop := - | tsf_rr : forall s1 s2 r1 r2, - future s1 ~| r1 -> - future s2 ~| r2 -> - TransSumFuture (s1, s2) ~| (r1, r2) - | tsf_l : forall s1 s1' s2 label, - future s1 ~[label]~> s1' -> - TransSumFuture (s1, s2) ~[inl label]~> (s1', s2) - | tsf_r : forall s1 s2 s2' label, - future s2 ~[label]~> s2' -> - TransSumFuture (s1, s2) ~[inr label]~> (s1, s2'). - - Instance transSum : @TransitionSystem State Label Result := - { future := TransSumFuture }. -End trans_sum. - -Global Arguments transSum {_ _ _ _ _ _} (_ _). - -Infix "<+>" := (transSum) (at level 99) : slot_scope. - Section state_reachability. Context `{HT : TransitionSystem}. - Inductive ReachableBy : State -> list Label -> State -> Prop := - | tsrb_nil : forall s, - ReachableBy s [] s - | tsrb_cons : forall s s' s'' label trace, + Inductive Trace : list Label -> State -> State -> Prop := + | tr_nil : forall s, + Trace [] s s + | tr_cons : forall s s' s'' label trace, future s ~[label]~> s' -> - ReachableBy s' trace s'' -> - ReachableBy s (label :: trace) s''. + Trace trace s' s'' -> + Trace (label :: trace) s s''. Definition HoareTriple (precondition : State -> Prop) (trace : list Label) (postcondition : State -> Prop) := forall s s', - ReachableBy s trace s' -> precondition s -> + Trace trace s s' -> precondition s -> postcondition s'. + + Definition RHoareTriple (precondition : State -> Prop) + (trace : list Label) + (postcondition : Result -> Prop) := + let postcondition' s := exists2 result, future s ~| result & postcondition result + in HoareTriple precondition trace postcondition'. End state_reachability. +Global Arguments Trace {_ _ _} (_). + Notation "'{{' a '}}' t '{{' b '}}'" := (HoareTriple a t b) (at level 40) : slot_scope. Notation "'{{}}' t '{{' b '}}'" := (HoareTriple (const True) t b) (at level 39) : slot_scope. -Inductive TraceInvariant `{TransitionSystem} (prop : State -> Prop) : list Label -> Prop := -| inv_nil : - TraceInvariant prop [] -| inv_cons : forall label trace, - {{prop}} [label] {{prop}} -> - TraceInvariant prop trace -> - TraceInvariant prop (label :: trace). - -Section result_reachability. - Context `{HT : TransitionSystem}. +Notation "'{{' a '}}' t '{<' b '>}'" := (RHoareTriple a t b) (at level 40) : slot_scope. +Notation "'{{}}' t '{<' b '>}'" := (RHoareTriple (const True) t b) (at level 39) : slot_scope. - Inductive RReachableBy : State -> list Label -> Result -> Prop := - | tsrrb_nil : forall s result, - future s ~| result -> - RReachableBy s [] result - | tsrrbt_cons : forall s s' label trace result, - future s ~[label]~> s' -> - RReachableBy s' trace result -> - RReachableBy s (label :: trace) result. +Section invariant. + Context `{HT : TransitionSystem} (invariant : State -> Prop). - Definition RHoareTriple (precondition : State -> Prop) - (trace : list Label) - (postcondition : Result -> Prop) := - forall s result, - RReachableBy s trace result -> precondition s -> - postcondition result. -End result_reachability. + Let invariant_future s f := future s f \/ invariant s. -Notation "'{{' a '}}' t '{<' b '>}'" := (RHoareTriple a t b) (at level 40) : slot_scope. -Notation "'{{}}' t '{<' b '>}'" := (RHoareTriple (const True) t b) (at level 39) : slot_scope. + Local Instance invTransSys : @TransitionSystem State Label Result := + { + future := invariant_future + }. -(* begin hide *) -Global Arguments In {_}. -Global Arguments Complement {_}. -Global Arguments Disjoint {_}. -(* end hide *) + Definition TraceInvariant (trace : list Label) : Prop := + forall s s', + Trace invTransSys trace s s'. +End invariant. Section trace_ensembles. Context `{HT : TransitionSystem}. @@ -183,20 +117,24 @@ Section trace_ensembles. forall t, In ensemble t -> {{ precondition }} t {{ postcondition }}. - Definition EnsembleInvariant (prop : State -> Prop) (ens : TraceEnsemble) : Prop := - forall (t : list Label), ens t -> TraceInvariant prop t. - - (** Hoare logic of trace ensembles consists of a single rule: *) + (** Same, but for the results: *) Definition ERHoareTriple (precondition : State -> Prop) (ensemble : TraceEnsemble) (postcondition : Result -> Prop) := forall t, In ensemble t -> {{ precondition }} t {< postcondition >}. + + Definition OccupiedTraceEnsemble (e : TraceEnsemble) : Prop := + exists t s s', + e t -> Trace HT t s s'. + + Definition FullyOccupiedTraceEnsemble (e : TraceEnsemble) : Prop := + forall t, + e t -> exists s s', Trace HT t s s'. End trace_ensembles. Notation "'-{{' a '}}' e '{{' b '}}'" := (EHoareTriple a e b)(at level 40) : slot_scope. Notation "'-{{}}' e '{{' b '}}'" := (EHoareTriple (const True) e b)(at level 40) : slot_scope. -Notation "'-{{}}' e '{{}}'" := (forall t, e t -> exists s s', ReachableBy s t s')(at level 38) : slot_scope. Notation "'-{{' a '}}' e '{<' b '>}'" := (ERHoareTriple a e b)(at level 40) : slot_scope. Notation "'-{{}}' e '{<' b '>}'" := (ERHoareTriple (const True) e b)(at level 40) : slot_scope. @@ -207,7 +145,7 @@ Section commutativity. Definition labels_commute (l1 l2 : Label) : Prop := forall (s s' : State), - ReachableBy s [l1; l2] s' <-> ReachableBy s [l2; l1] s'. + Trace HT [l1; l2] s s' <-> Trace HT [l2; l1] s s'. Global Instance events_commuteSymm : Symmetric labels_commute. Proof. @@ -216,43 +154,102 @@ Section commutativity. now symmetry in Hab. Qed. End defn. +End commutativity. - Section summ. - Context {S1 L1 R1 S2 L2 R2 : Type} - `{T1 : TransitionSystem S1 L1 R1} `{T2 : TransitionSystem S2 L2 R2}. +Section trans_prod. + (* Product of transition systems: *) + Context {Label S1 S2 R1 R2 : Type} + `{T1 : TransitionSystem S1 Label R1} `{T2 : TransitionSystem S2 Label R2}. - Lemma transition_system_sum_comm (l1 : L1) (l2 : L2) : - @labels_commute _ _ _ (T1 <+> T2) (inl l1) (inr l2). - Proof. - unfold labels_commute. intros s s'. - split; sauto. - Qed. - End summ. + Let State : Type := S1 * S2. - Section product. - Context {Label S1 R1 S2 R2 : Type} - `{T1 : TransitionSystem S1 Label R1} `{T2 : TransitionSystem S2 Label R2}. + Inductive TransProdResult := + | tpr_l : forall (result_left : R1) (state_right : S2), TransProdResult + | tpr_r : forall (state_left : S1) (result_right : R2), TransProdResult. - Lemma transition_system_prod_comm (l1 : Label) (l2 : Label) : - @labels_commute _ _ _ T1 l1 l2 -> - @labels_commute _ _ _ T2 l1 l2 -> - @labels_commute _ _ _ (T1 <*> T2) l1 l2. - Proof. - unfold labels_commute. intros Hl Hr [s_l s_r] [s_l'' s_r'']. - split; intros H. - - specialize (Hl s_l s_l''). specialize (Hr s_r s_r''). - inversion_clear H; inversion_clear H1; inversion_clear H2; subst. - simpl in *. - constructor 2 with (s' := s'). - simpl. - - inversion_clear H0. - inversion_clear H. - simpl in *. - Abort. - End product. -End commutativity. + Inductive TransProdFuture : State -> @Future State Label TransProdResult -> Prop := + | tpf_cc : forall (label : Label) (s1 s1' : S1) (s2 s2' : S2), + future s1 ~[label]~> s1' -> + future s2 ~[label]~> s2' -> + TransProdFuture (s1, s2) ~[label]~> (s1', s2') + | tpf_rc : forall s1 s2 r, + future s1 ~| r -> + TransProdFuture (s1, s2) ~| (tpr_l r s2) + | tpf_cr : forall s1 s2 r, + future s2 ~| r -> + TransProdFuture (s1, s2) ~| (tpr_r s1 r). + + Instance transProd : @TransitionSystem State Label TransProdResult := + { future := TransProdFuture }. + + Lemma transition_system_prod_comm (l1 : Label) (l2 : Label) : + @labels_commute _ _ _ T1 l1 l2 -> + @labels_commute _ _ _ T2 l1 l2 -> + @labels_commute _ _ _ transProd l1 l2. + Proof. + unfold labels_commute, transProd. + intros HT1 HT2 [s_l s_r] [s''_l s''_r]. + specialize (HT1 s_l s''_l). specialize (HT2 s_r s''_r). + split; intros H. + { inversion H. clear H. inversion H5. clear H5. inversion H10. clear H10. subst. + destruct s' as [s'_l s'_r]. + inversion_clear H2. inversion_clear H7. + destruct HT1 as [HT1 _]. destruct HT2 as [HT2 _]. + assert (HT1p : Trace T1 [l1; l2] s_l s''_l) by sauto. specialize (HT1 HT1p). clear HT1p. + assert (HT2p : Trace T2 [l1; l2] s_r s''_r) by sauto. specialize (HT2 HT2p). clear HT2p. + sauto. + } + { inversion H. clear H. inversion H5. clear H5. inversion H10. clear H10. subst. + destruct s' as [s'_l s'_r]. + inversion_clear H2. inversion_clear H7. + destruct HT1 as [_ HT1]. destruct HT2 as [_ HT2]. + assert (HT1p : Trace T1 [l2; l1] s_l s''_l) by sauto. specialize (HT1 HT1p). clear HT1p. + assert (HT2p : Trace T2 [l2; l1] s_r s''_r) by sauto. specialize (HT2 HT2p). clear HT2p. + sauto. + } + Qed. +End trans_prod. +Global Arguments transProd {_ _ _ _ _} (_ _). + +Infix "<*>" := (transProd) (at level 98) : slot_scope. + +Section trans_sum. + (* Sum of transition systems: *) + Context {S1 L1 R1 S2 L2 R2} `{T1 : TransitionSystem S1 L1 R1} `{T2 : TransitionSystem S2 L2 R2}. + + Let State : Type := S1 * S2. + + Let Label : Type := L1 + L2. + + Let Result : Type := R1 * R2. + + Inductive TransSumFuture : State -> @Future State Label Result -> Prop := + | tsf_rr : forall s1 s2 r1 r2, + future s1 ~| r1 -> + future s2 ~| r2 -> + TransSumFuture (s1, s2) ~| (r1, r2) + | tsf_l : forall s1 s1' s2 label, + future s1 ~[label]~> s1' -> + TransSumFuture (s1, s2) ~[inl label]~> (s1', s2) + | tsf_r : forall s1 s2 s2' label, + future s2 ~[label]~> s2' -> + TransSumFuture (s1, s2) ~[inr label]~> (s1, s2'). + + Instance transSum : @TransitionSystem State Label Result := + { future := TransSumFuture }. + + Lemma transition_system_sum_comm (l1 : L1) (l2 : L2) : + @labels_commute _ _ _ transSum (inl l1) (inr l2). + Proof. + unfold labels_commute. intros s s'. + split; sauto. + Qed. +End trans_sum. + +Global Arguments transSum {_ _ _ _ _ _} (_ _). + +Infix "<+>" := (transSum) (at level 99) : slot_scope. Section canonical_order. Class CanonicalOrder (Label : Type) := @@ -275,18 +272,14 @@ Section canonical_order. | head :: _ => can_follow label head end. - Inductive CanonicalTrace : list Label -> Prop := - | canontr_nil : CanonicalTrace [] - | canontr_cons : forall label trace, + Inductive CanonicalTrace : list Label -> State -> State -> Prop := + | canontr_nil : forall s, + CanonicalTrace [] s s + | canontr_cons : forall s s' s'' label trace, + future s ~[label]~> s' -> can_follow_hd label trace -> - CanonicalTrace trace -> - CanonicalTrace (label :: trace). - - Theorem canon_trace_replacement : - (forall t, - - - + CanonicalTrace trace s' s'' -> + CanonicalTrace (label :: trace) s s''. End comm. End canonical_order.