forked from xcicode/crypto1_bs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crypto1_bs_crack.c
256 lines (234 loc) · 12.2 KB
/
crypto1_bs_crack.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// Bit-sliced Crypto-1 brute-forcing implementation
// Builds on the data structures returned by CraptEV1 craptev1_get_space(nonces, threshold, uid)
/*
Copyright (c) 2015-2016 Aram Verstegen
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdlib.h>
#ifndef __APPLE__
#include <malloc.h>
#endif
#include "crypto1_bs_crack.h"
inline uint64_t crack_states_bitsliced(uint32_t **task){
// the idea to roll back the half-states before combining them was suggested/explained to me by bla
// first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
uint64_t key = -1;
#ifdef EXACT_COUNT
size_t bucket_states_tested = 0;
size_t bucket_size[(task[4]-task[3])/MAX_BITSLICES];
#else
const size_t bucket_states_tested = (task[4]-task[3])*(task[2]-task[1]);
#endif
// bitslice all the even states
bitslice_t * restrict bitsliced_even_states[(task[4]-task[3])/MAX_BITSLICES];
size_t bitsliced_blocks = 0;
for(uint32_t const * restrict p_even = task[3]; p_even < task[4]; p_even+=MAX_BITSLICES){
#ifdef __WIN32
#ifdef __MINGW32__
bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t), sizeof(bitslice_t));
#else
bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t), sizeof(bitslice_t));
#endif
#else
#ifdef __APPLE__
bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t));
#else
bitslice_t * restrict lstate_p = memalign(sizeof(bitslice_t), (STATE_SIZE+ROLLBACK_SIZE) * sizeof(bitslice_t));
#endif
#endif
memset(lstate_p, 0x0, (STATE_SIZE)*sizeof(bitslice_t));
// bitslice even half-states
const size_t max_slices = (task[4]-p_even) < MAX_BITSLICES ? task[4]-p_even : MAX_BITSLICES;
#ifdef EXACT_COUNT
bucket_size[bitsliced_blocks] = max_slices;
#endif
for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
// set even bits
uint32_t e = *(p_even+slice_idx);
for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
if(e&1){
lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
}
}
}
// compute the rollback bits
for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
// inlined crypto1_bs_lfsr_rollback
const bitslice_value_t feedout = lstate_p[0].value;
++lstate_p;
const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
}
bitsliced_even_states[bitsliced_blocks++] = lstate_p;
}
// bitslice every odd state to every block of even half-states with half-finished rollback
for(uint32_t const * restrict p_odd = task[1]; p_odd < task[2]; ++p_odd){
// early abort
if(keys_found){
goto out;
}
// set the odd bits and compute rollback
uint64_t o = (uint64_t) *p_odd;
lfsr_rollback_byte(&o, 0, 1);
// pre-compute part of the odd feedback bits (minus rollback)
bool odd_feedback_bit = parity(o&0x9ce5c);
crypto1_bs_rewind_a0();
// set odd bits
for(size_t state_idx = 0; state_idx < (STATE_SIZE-ROLLBACK_SIZE); o >>= 1, state_idx+=2){
if(o & 1){
state_p[state_idx] = bs_ones;
} else {
state_p[state_idx] = bs_zeroes;
}
}
const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
// set even and rollback bits
for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
size_t state_idx;
// set even bits
for(state_idx = 0; state_idx < (STATE_SIZE-ROLLBACK_SIZE); state_idx+=2){
state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
}
// set rollback bits
uint64_t lo = o;
for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
// set the odd bits and take in the odd rollback bits from the even states
if(lo & 1){
state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
} else {
state_p[state_idx] = bitsliced_even_state[state_idx];
}
// set the even bits and take in the even rollback bits from the odd states
if((lo >> 32) & 1){
state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
} else {
state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
}
}
#ifdef EXACT_COUNT
// Fix a "1000000% bug". Looks like here is a problem with OS X gcc
size_t current_bucket_size = bucket_size[block_idx] > MAX_BITSLICES ? MAX_BITSLICES : bucket_size[block_idx];
bucket_states_tested += current_bucket_size;
#ifdef ONLINE_COUNT
__atomic_fetch_add(&total_states_tested, current_bucket_size, __ATOMIC_RELAXED);
#endif
#else
#ifdef ONLINE_COUNT
__atomic_fetch_add(&total_states_tested, MAX_BITSLICES, __ATOMIC_RELAXED);
#endif
#endif
// pre-compute first keystream and feedback bit vectors
const bitslice_value_t ksb = crypto1_bs_f20(state_p);
const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
state_p[47-24].value ^ state_p[47-42].value);
// vector to contain test results (1 = passed, 0 = failed)
bitslice_t results = bs_ones;
for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
size_t parity_bit_idx = 0;
bitslice_value_t fb_bits = fbb;
bitslice_value_t ks_bits = ksb;
state_p = &states[KEYSTREAM_SIZE-1];
bitslice_value_t parity_bit_vector = bs_zeroes.value;
// highest bit is transmitted/received first
for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
// decrypt nonce bits
const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
// compute real parity bits on the fly
parity_bit_vector ^= decrypted_nonce_bit_vector;
// update state
state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
// compute next keystream bit
ks_bits = crypto1_bs_f20(state_p);
// for each byte:
if((ks_idx&7) == 0){
// get encrypted parity bits
const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
// decrypt parity bits
const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
// compare actual parity bits with decrypted parity bits and take count in results vector
results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
// make sure we still have a match in our set
// if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
// this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
// the short-circuiting also helps
if(results.bytes64[0] == 0
#if MAX_BITSLICES > 64
&& results.bytes64[1] == 0
#endif
#if MAX_BITSLICES > 128
&& results.bytes64[2] == 0
&& results.bytes64[3] == 0
#endif
){
goto stop_tests;
}
// this is about as fast but less portable (requires -std=gnu99)
// asm goto ("ptest %1, %0\n\t"
// "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
parity_bit_vector = bs_zeroes.value;
}
// compute next feedback bit vector
fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
}
}
// all nonce tests were successful: we've found the key in this block!
state_t keys[MAX_BITSLICES];
crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
if(get_vector_bit(results_idx, results)){
key = keys[results_idx].value;
__atomic_fetch_add(&keys_found, 1, __ATOMIC_RELAXED);
goto out;
}
}
stop_tests:
// prepare to set new states
crypto1_bs_rewind_a0();
continue;
}
}
out:
for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
#ifdef __WIN32
#ifdef __MINGW32__
__mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
#else
_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
#endif
#else
free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
#endif
}
#ifndef ONLINE_COUNT
__atomic_fetch_add(&total_states_tested, bucket_states_tested, __ATOMIC_RELAXED);
#endif
return key;
}