-
Notifications
You must be signed in to change notification settings - Fork 4
/
trainer.py
258 lines (211 loc) · 10.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os.path
import dataclasses
from dataclasses import dataclass, field, is_dataclass
from tqdm import tqdm
import numpy as np
import pandas as pd
from enum import Enum
from sklearn.metrics import f1_score
import torch
import torch.nn.functional as F
from lifelong_learning import LifelongGraphDataset
class RestartMode(Enum):
WARM = "warm"
COLD = "cold"
@dataclass
class TrainingArguments:
dataset: str = field(default=None, metadata={"help": "Dataset name or path"})
history: int = field(default=None, metadata={"help": "History size"})
restart_mode: RestartMode = field(default="warm", metadata={"help": "Restart mode of {'warm', 'cold'}"})
learning_rate: float = field(default=1e-3, metadata={"help": "The initial learning rate for Adam."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay if we apply some."})
dropout: float = field(default=0.1, metadata={"help": "Dropout probability"})
num_pretrain_epochs: int = field(default=0, metadata={"help": "Number of pretraining epochs"})
num_train_epochs: int = field(default=200, metadata={"help": "Number of training epochs per time"})
class ResultsWriter:
"""
A stateful ResultsWriter that writes results to csv files including hyperparameters and other things
Example:
rw = ResultsWriter("something",
"""
def __init__(self, path: str, state: dict = None):
self.path = path
self._state = dict(state) if state is not None else {}
self._frozen_keys = None
def _freeze(self, keys):
""" Freezes the keys used for the first write """
self._frozen_keys = frozenset(keys)
@property
def _isfrozen(self):
return bool(self._frozen_keys)
def _check(self, keys):
if self._isfrozen and not set(keys).issubset(self._frozen_keys):
raise KeyError("ResultsWriter's keys are frozen")
def update(self, dictlike:dict=None, **kwargs):
"""
Safely updates internal state, for example: rw.update(t=2)
"""
if dictlike:
kwargs = {**dictlike, **kwargs}
self._check(kwargs.keys())
self._state.update(kwargs)
def add_result(self, dictlike:dict=None, **kwargs):
"""
Writes a result to `self.path`. Arguments can be provided as dict or as keyword arguments.
"""
if dictlike:
kwargs = {**dictlike, **kwargs}
self._check(kwargs.keys())
# Create new dict to write, *dont* update state
record = {**self._state, **kwargs}
# Write full record to csv file
result = pd.DataFrame.from_records([record])
# include header only if file does not exist
header = not os.path.isfile(self.path)
result.to_csv(self.path, header=header, index=False, mode='a')
if not self._isfrozen:
# Freeze after first write
# including result-specific columns
self._freeze(record.keys())
# No more updates to the state's keys are allowed
class IncrementalTrainer:
def __init__(self, model, dataset: LifelongGraphDataset, args: TrainingArguments):
""" Initializes a trainer """
# TODO: Add argument for inductive
# TODO: Add tensorboard SummaryWriter
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model = model.to(self.device)
self.args = args
self.dataset = dataset
self.num_nodes = features.size(0) if num_nodes is None else num_nodes
assert args.restart_mode in ['warm', 'cold'], "Unknown restart mode: " + restart_mode
self.results_writer = ResultsWriter("/tmp/test.csv", dataclasses.asdict(args))
self.optimizer = self._build_optimizer()
def _build_optimizer(self):
"""
Method that returns an optimizer
Subclasses may overwrite this to use a different optimizer
"""
return torch.optim.Adam(self.model.parameters(), lr=self.args.learning_rate,
weight_decay=self.args.weight_decay)
def _prepare_data_for_time(self, t, history, device=None, exclude_class=None):
print("Preparing data for time:", t)
# Prepare subgraph
# Subg holds vertex ids corresponding to original graph
subg_nodes = torch.arange(self.num_nodes)[(self.timestamps <= t) & (t >= (t - history))]
subg_num_nodes = subg_nodes.size(0)
# Create the subgraph (depends on backend)
if self.backend == 'dgl':
subg = graph.subgraph(subg_nodes)
subg.set_n_initializer(dgl.init.zero_initializer)
elif self.backend == 'geometric':
subg, __edge_attr = tg.utils.subgraph(subg_nodes,
graph, relabel_nodes=True)
else:
raise ValueError("Unkown backend: " + backend)
# Filter supplementary data for subgraph vertices
subg_features = self.features[subg_nodes]
subg_labels = self.labels[subg_nodes]
subg_timestamps = self.timestamps[subg_nodes]
# Prepare masks wrt *subgraph*
train_nid = torch.arange(subg_num_nodes)[subg_timestamps < t]
test_nid = torch.arange(subg_num_nodes)[subg_timestamps == t]
if exclude_class is not None:
train_nid = train_nid[subg_labels[train_nid] != exclude_class]
test_nid = test_nid[subg_labels[test_nid] != exclude_class]
print("[{}] #Training: {}".format(t, train_nid.size(0)))
print("[{}] #Test : {}".format(t, test_nid.size(0)))
if device is not None:
if self.backend == 'geometric':
subg = subg.to(device)
subg_features = subg_features.to(device)
subg_labels = subg_labels.to(device)
return subg, subg_features, subg_labels, subg_timestamps, train_nid, test_nid
def _prepare_data_for_time_inductive(self, t, history, **kwargs):
train_g, train_feats, train_labels, train_timestamps, __, __ = self._prepare_data_for_time(t-1, history, **kwargs)
test_g, test_feats, test_labels, test_timestamps, __, test_mask = self._prepare_data_for_time(t, history, **kwargs)
return train_data, test_data
def restart(self, known_classes:set=None, new_classes:set=None):
""" Performs a restart in-between different time steps """
# TODO integrate hybrid strategy
if self.args.restart_mode == 'cold':
# cold restart -> reset all parameters
self.model.reset_parameters()
elif self.args.restart_mode == 'warm':
if known_classes and new_classes:
# If we have both known and new classes
# Copy all parameters for known classes
# and freshly initialize params for new classes
# **Models must implement `final_parameters()` and `reset_final_parameters()`**
known_class_ids = torch.LongTensor(list(known_classes))
saved_params = [p.data.clone() for p in self.model.final_parameters()]
self.model.reset_final_parameters()
for i, params in enumerate(self.model.final_parameters()):
if params.dim() == 1: # bias vector
params.data[known_class_ids] = saved_params[i][known_class_ids]
elif params.dim() == 2: # weight matrix
params.data[known_class_ids, :] = saved_params[i][known_class_ids, :]
else:
NotImplementedError("Parameter dim > 2 ?")
# Else do nothing, but keep model parameters as they are
else:
raise NotImplementedError("Unknown restart mode '%s':" % self.restarts)
# Reset the state of the optimizer
self.optimizer = self._build_optimizer()
def _training_step(self, g, feats, labels, mask=None, weights=None):
""" Perform one training step """
inputs = (g, feats) if self.backend == 'dgl' else (feats, g)
logits = self.model(*inputs)
reduction = 'none' if weights is not None else 'mean'
if mask is not None:
loss = F.cross_entropy(logits[mask], labels[mask], reduction=reduction)
else:
loss = F.cross_entropy(logits, labels, reduction=reduction)
if weights is not None:
loss = (loss * weights).sum()
# Step
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss
def _train_epoch(self, *args, **kwargs):
# More flexible subclassing
return self._training_step(*args, **kwargs)
def train(self, g, feats, labels, mask=None, weights=None):
""" Train multiple epochs """
self.model.train()
for epoch in tqdm(range(self.args.num_train_epochs), desc="Epoch"):
loss = self._train_epoch(g, feats, labels, mask=mask)
print("Epoch {:d} | Loss: {:.4f}".format(epoch + 1, loss.detach().item()))
def evaluate(self, g, feats, labels, mask=None, compute_loss=True):
# TODO: Store results
self.model.eval()
with torch.no_grad():
inputs = (g, feats) if self.backend == 'dgl' else (feats, g)
logits = self.model(*inputs)
if mask is not None:
logits = logits[mask]
labels = labels[mask]
if compute_loss:
loss = F.cross_entropy(logits, labels).item()
else:
loss = None
if isinstance(logits, np.ndarray):
logits = torch.FloatTensor(logits)
__max_vals, max_indices = torch.max(logits.detach(), 1)
acc = (max_indices == labels).sum().float() / labels.size(0)
f1 = f1_score(labels.cpu(), max_indices.cpu(), average="macro")
return acc.item(), f1, loss
def train_and_evaluate_incremental(self, t_start, history):
""" Trains and evaluates incrementally starting at `t_start` (inclusive)"""
t_end = self.timestamps.max()
ts = torch.unique(self.timestamps[self.timestamps >= t_start], sorted=True)
known_classes = set()
for t in tqdm(ts, desc="Time"):
# subggraph
g, x, y, __, train_nid, test_nid = self._prepare_data_for_time(t, history)
new_classes = set(y[train_nid].cpu().numpy()) - known_classes
self.restart(known_classes, new_classes)
self.train(g, x, y, mask=train_nid, epochs=self.epochs_per_time)
acc, f1, loss = self.evaluate(g, x, y, mask=test_nid, compute_loss=True)
known_classes |= new_classes