forked from eriklindernoren/ML-From-Scratch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
perceptron.py
61 lines (54 loc) · 2.62 KB
/
perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from __future__ import print_function, division
import math
import numpy as np
# Import helper functions
from mlfromscratch.utils import train_test_split, to_categorical, normalize, accuracy_score
from mlfromscratch.deep_learning.activation_functions import Sigmoid, ReLU, SoftPlus, LeakyReLU, TanH, ELU
from mlfromscratch.deep_learning.loss_functions import CrossEntropy, SquareLoss
from mlfromscratch.utils import Plot
from mlfromscratch.utils.misc import bar_widgets
import progressbar
class Perceptron():
"""The Perceptron. One layer neural network classifier.
Parameters:
-----------
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
activation_function: class
The activation that shall be used for each neuron.
Possible choices: Sigmoid, ExpLU, ReLU, LeakyReLU, SoftPlus, TanH
loss: class
The loss function used to assess the model's performance.
Possible choices: SquareLoss, CrossEntropy
learning_rate: float
The step length that will be used when updating the weights.
"""
def __init__(self, n_iterations=20000, activation_function=Sigmoid, loss=SquareLoss, learning_rate=0.01):
self.n_iterations = n_iterations
self.learning_rate = learning_rate
self.loss = loss()
self.activation_func = activation_function()
self.progressbar = progressbar.ProgressBar(widgets=bar_widgets)
def fit(self, X, y):
n_samples, n_features = np.shape(X)
_, n_outputs = np.shape(y)
# Initialize weights between [-1/sqrt(N), 1/sqrt(N)]
limit = 1 / math.sqrt(n_features)
self.W = np.random.uniform(-limit, limit, (n_features, n_outputs))
self.w0 = np.zeros((1, n_outputs))
for i in self.progressbar(range(self.n_iterations)):
# Calculate outputs
linear_output = X.dot(self.W) + self.w0
y_pred = self.activation_func(linear_output)
# Calculate the loss gradient w.r.t the input of the activation function
error_gradient = self.loss.gradient(y, y_pred) * self.activation_func.gradient(linear_output)
# Calculate the gradient of the loss with respect to each weight
grad_wrt_w = X.T.dot(error_gradient)
grad_wrt_w0 = np.sum(error_gradient, axis=0, keepdims=True)
# Update weights
self.W -= self.learning_rate * grad_wrt_w
self.w0 -= self.learning_rate * grad_wrt_w0
# Use the trained model to predict labels of X
def predict(self, X):
y_pred = self.activation_func(X.dot(self.W) + self.w0)
return y_pred