forked from BlankerL/DXY-COVID-19-Data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
script.py
228 lines (198 loc) · 8 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
@ProjectName: DXY-2019-nCoV-Crawler
@FileName: script.py
@Author: Jiabao Lin
@Date: 2020/1/31
"""
from git import Repo
from pymongo import MongoClient
import os
import json
import time
import logging
import datetime
import requests
import pandas as pd
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')
logger = logging.getLogger(__name__)
uri = '**Confidential**'
client = MongoClient(uri)
db = client['2019-nCoV']
collections = {
'DXYOverall': 'overall',
'DXYArea': 'area',
'DXYNews': 'news',
'DXYRumors': 'rumors'
}
time_types = ('pubDate', 'createTime', 'modifyTime', 'dataInfoTime', 'crawlTime', 'updateTime')
def dict_parser(document, city_dict=None):
result = dict()
try:
result['continentName'] = document['continentName']
result['continentEnglishName'] = document['continentEnglishName']
except KeyError:
result['continentName'] = None
result['continentEnglishName'] = None
result['countryName'] = document['countryName']
try:
result['countryEnglishName'] = document['countryEnglishName']
except KeyError:
result['countryEnglishName'] = None
result['provinceName'] = document['provinceName']
result['provinceEnglishName'] = document.get('provinceEnglishName')
result['province_zipCode'] = document.get('locationId')
result['province_confirmedCount'] = document['confirmedCount']
result['province_suspectedCount'] = document['suspectedCount']
result['province_curedCount'] = document['curedCount']
result['province_deadCount'] = document['deadCount']
if city_dict:
result['cityName'] = city_dict['cityName']
result['cityEnglishName'] = city_dict.get('cityEnglishName')
result['city_zipCode'] = city_dict.get('locationId')
result['city_confirmedCount'] = city_dict['confirmedCount']
result['city_suspectedCount'] = city_dict['suspectedCount']
result['city_curedCount'] = city_dict['curedCount']
result['city_deadCount'] = city_dict['deadCount']
result['updateTime'] = datetime.datetime.fromtimestamp(int(document['updateTime']/1000))
return result
def git_manager(changed_files):
repo = Repo(path=os.path.split(os.path.realpath(__file__))[0])
repo.index.add(changed_files)
repo.index.commit(message='{datetime} - Change detected!'.format(datetime=datetime.datetime.now()))
origin = repo.remote('origin')
origin.push()
logger.info('Pushing to GitHub successfully!')
class DB:
def __init__(self):
self.db = db
def count(self, collection):
return self.db[collection].count_documents(filter={})
def dump(self, collection):
return self.db[collection].aggregate(
pipeline=[
{
'$sort': {
'updateTime': -1,
'crawlTime': -1
}
}
],
allowDiskUse=True
)
class Listener:
def __init__(self):
self.db = DB()
def run(self):
while True:
self.listener()
time.sleep(3600)
def listener(self):
changed_files = list()
for collection in collections:
json_file = open(
os.path.join(
os.path.split(os.path.realpath(__file__))[0], 'json', collection + '.json'),
'r', encoding='utf-8'
)
try:
static_data = json.load(json_file)
except (UnicodeDecodeError, FileNotFoundError, json.decoder.JSONDecodeError):
static_data = None
json_file.close()
while True:
request = requests.get(url='https://lab.isaaclin.cn/nCoV/api/' + collections.get(collection))
if request.status_code == 200:
current_data = request.json()
break
else:
time.sleep(1)
continue
if static_data != current_data:
self.json_dumper(collection=collection, content=current_data)
changed_files.append('json/' + collection + '.json')
cursor = self.db.dump(collection=collection)
self.csv_dumper(collection=collection, cursor=cursor)
changed_files.append('csv/' + collection + '.csv')
cursor = self.db.dump(collection=collection)
self.db_dumper(collection=collection, cursor=cursor)
changed_files.append('json/' + collection + '-TimeSeries.json')
logger.info('{collection} checked!'.format(collection=collection))
if changed_files:
git_manager(changed_files=changed_files)
def json_dumper(self, collection, content=None):
json_file = open(
os.path.join(
os.path.split(
os.path.realpath(__file__))[0], 'json', collection + '.json'
),
'w', encoding='utf-8'
)
json.dump(content, json_file, ensure_ascii=False, indent=4)
json_file.close()
def csv_dumper(self, collection, cursor):
if collection == 'DXYArea':
structured_results = list()
for document in cursor:
if document.get('cities', None):
for city_counter in range(len(document['cities'])):
city_dict = document['cities'][city_counter]
structured_results.append(dict_parser(document=document, city_dict=city_dict))
else:
structured_results.append(dict_parser(document=document))
df = pd.DataFrame(structured_results)
df.to_csv(
path_or_buf=os.path.join(
os.path.split(os.path.realpath(__file__))[0], 'csv', collection + '.csv'),
index=False, encoding='utf_8_sig', float_format="%i"
)
elif collection == 'DXYOverall':
df = pd.DataFrame(data=cursor)
for time_type in time_types:
if time_type in df.columns:
df[time_type] = df[time_type].apply(lambda x: datetime.datetime.fromtimestamp(x / 1000) if not pd.isna(x) else '')
del df['_id']
del df['infectSource']
del df['passWay']
del df['virus']
df.to_csv(
path_or_buf=os.path.join(
os.path.split(os.path.realpath(__file__))[0], 'csv', collection + '.csv'),
index=False, encoding='utf_8_sig', date_format="%Y-%m-%d %H:%M:%S"
)
else:
df = pd.DataFrame(data=cursor)
for time_type in time_types:
if time_type in df.columns:
df[time_type] = df[time_type].apply(lambda x: datetime.datetime.fromtimestamp(x / 1000) if not pd.isna(x) else '')
df.to_csv(
path_or_buf=os.path.join(
os.path.split(os.path.realpath(__file__))[0], 'csv', collection + '.csv'),
index=False, encoding='utf_8_sig', date_format="%Y-%m-%d %H:%M:%S"
)
def db_dumper(self, collection, cursor):
data = list()
if collection != 'DXYArea':
for document in cursor:
document.pop('_id')
if document.get('comment'):
document.pop('comment')
data.append(document)
else:
for document in cursor:
document.pop('_id')
document.pop('statisticsData', None)
document.pop('showRank', None)
document.pop('operator', None)
data.append(document)
json_file = open(
os.path.join(
os.path.split(
os.path.realpath(__file__))[0], 'json', collection + '-TimeSeries.json'
),
'w', encoding='utf-8'
)
json.dump(data, json_file, ensure_ascii=False, indent=4)
json_file.close()
if __name__ == '__main__':
listener = Listener()
listener.run()