forked from snooty7/BrawlStars
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
81 lines (71 loc) · 2.61 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# organize imports
from __future__ import print_function
# keras imports
from keras.applications.vgg16 import VGG16, preprocess_input
from keras.applications.vgg19 import VGG19, preprocess_input
from keras.applications.xception import Xception, preprocess_input
from keras.applications.resnet50 import ResNet50, preprocess_input
from keras.applications.inception_resnet_v2 import InceptionResNetV2, preprocess_input
from keras.applications.mobilenet import MobileNet, preprocess_input
from keras.applications.inception_v3 import InceptionV3, preprocess_input
from keras.preprocessing import image
from keras.models import Model
from keras.models import model_from_json
from keras.layers import Input
# other imports
from sklearn.linear_model import LogisticRegression
import numpy as np
import os
import json
import pickle
import cv2
# load the user configs
with open('conf.json') as f:
config = json.load(f)
# config variables
model_name = config["model"]
weights = config["weights"]
include_top = config["include_top"]
train_path = config["train_path"]
test_path = config["test_path"]
features_path = config["features_path"]
labels_path = config["labels_path"]
test_size = config["test_size"]
results = config["results"]
model_path = config["model_path"]
seed = config["seed"]
classifier_path = config["classifier_path"]
# load the trained logistic regression classifier
print ("[INFO] loading the classifier...")
classifier = pickle.load(open(classifier_path, 'rb'))
if model_name == "inceptionv3":
base_model = InceptionV3(include_top=include_top, weights=weights, input_tensor=Input(shape=(299,299,3)))
model = Model(input=base_model.input, output=base_model.layers[-1].output)
image_size = (299, 299)
else:
base_model = None
# get all the train labels
train_labels = os.listdir(train_path)
# get all the test images paths
test_images = os.listdir(test_path)
# loop through each image in the test data
for image_path in test_images:
path = test_path + '\\' + image_path
img = image.load_img(path, target_size=image_size)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
feature = model.predict(x)
flat = feature.flatten()
flat = np.expand_dims(flat, axis=0)
preds = classifier.predict(flat)
prediction = train_labels[preds[0]]
# perform prediction on test image
print ("Move " + train_labels[preds[0]])
img_color = cv2.imread(path, 1)
cv2.putText(img_color, "Move to " + prediction, (140,445), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)
cv2.imshow("test", img_color)
# key tracker
key = cv2.waitKey(0) & 0xFF
if (key == ord('q')):
cv2.destroyAllWindows()