-
Notifications
You must be signed in to change notification settings - Fork 29
/
um-code-primes.dtx
387 lines (383 loc) · 11.2 KB
/
um-code-primes.dtx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
%%^^A%% um-code-primes.dtx -- part of UNICODE-MATH <wspr.io/unicode-math>
%%^^A%% The definitions needed for the input of primes.
% \section{Primes}
%
% \begin{macrocode}
%<*package>
% \end{macrocode}
%
% We need a new `prime' algorithm. Unicode math has four pre-drawn prime glyphs.
% \begin{quote}\obeylines
% \unichar{2032} {prime} (\cs{prime}): $x\prime$
% \unichar{2033} {double prime} (\cs{dprime}): $x\dprime$
% \unichar{2034} {triple prime} (\cs{trprime}): $x\trprime$
% \unichar{2057} {quadruple prime} (\cs{qprime}): $x\qprime$
% \end{quote}
% As you can see, they're all drawn at the correct height without being superscripted.
% However, in a correctly behaving OpenType font,
% we also see different behaviour after the \texttt{ssty} feature is applied:
% \begin{quote}
% \font\1="[XITSMath-Regular.otf]:script=math,+ssty=0"\1
% \char"1D465\char"2032\quad
% \char"1D465\char"2033\quad
% \char"1D465\char"2034\quad
% \char"1D465\char"2057
% \end{quote}
% The glyphs are now `full size' so that when placed inside a superscript,
% their shape will match the originally sized ones. Many thanks to Ross Mills
% of Tiro Typeworks for originally pointing out this behaviour.
%
% In regular \LaTeX, primes can be entered with the straight quote character
% |'|, and multiple straight quotes chain together to produce multiple
% primes. Better results can be achieved in \pkg{unicode-math} by chaining
% multiple single primes into a pre-drawn multi-prime glyph; consider
% $x\prime{}\prime{}\prime$ vs.\ $x\trprime$.
%
% For Unicode maths, we wish to conserve this behaviour and augment it with
% the possibility of adding any combination of Unicode prime or any of the
% $n$-prime characters. E.g., the user might copy-paste a double prime from
% another source and then later type another single prime after it; the output
% should be the triple prime.
%
% Our algorithm is:
% \begin{itemize}[nolistsep]
% \item Prime encountered; pcount=1.
% \item Scan ahead; if prime: pcount:=pcount+1; repeat.
% \item If not prime, stop scanning.
% \item If pcount=1, \cs{prime}, end.
% \item If pcount=2, check \cs{dprime}; if it exists, use it, end; if not, goto last step.
% \item Ditto pcount=3 \& \cs{trprime}.
% \item Ditto pcount=4 \& \cs{qprime}.
% \item If pcount>4 or the glyph doesn't exist, insert pcount \cs{prime}s with \cs{primekern} between each.
% \end{itemize}
%
% This is a wrapper to insert a superscript; if there is a subsequent
% trailing superscript, then it is included within the insertion.
% \begin{macrocode}
\cs_new:Nn \@@_arg_i_before_egroup:n {#1\egroup}
\cs_new:Nn \@@_superscript:n
{
^\bgroup #1
\peek_meaning_remove:NTF ^ \@@_arg_i_before_egroup:n \egroup
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_nprimes:Nn
{
\@@_superscript:n
{
#1
\prg_replicate:nn {#2-1} { \mskip \g_@@_primekern_muskip #1 }
}
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_nprimes_select:nn
{
\int_case:nnF {#2}
{
{1} { \@@_superscript:n {#1} }
{2} {
\@@_glyph_if_exist:NnTF \g_@@_prime_font_cmd_tl {"2033}
{ \@@_superscript:n {\@@_prime_double_mchar} }
{ \@@_nprimes:Nn #1 {#2} }
}
{3} {
\@@_glyph_if_exist:NnTF \g_@@_prime_font_cmd_tl {"2034}
{ \@@_superscript:n {\@@_prime_triple_mchar} }
{ \@@_nprimes:Nn #1 {#2} }
}
{4} {
\@@_glyph_if_exist:NnTF \g_@@_prime_font_cmd_tl {"2057}
{ \@@_superscript:n {\@@_prime_quad_mchar} }
{ \@@_nprimes:Nn #1 {#2} }
}
}
{
\@@_nprimes:Nn #1 {#2}
}
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_nbackprimes_select:nn
{
\int_case:nnF {#2}
{
{1} { \@@_superscript:n {#1} }
{2} {
\@@_glyph_if_exist:NnTF \g_@@_prime_font_cmd_tl {"2036}
{ \@@_superscript:n {\@@_backprime_double_mchar} }
{ \@@_nprimes:Nn #1 {#2} }
}
{3} {
\@@_glyph_if_exist:NnTF \g_@@_prime_font_cmd_tl {"2037}
{ \@@_superscript:n {\@@_backprime_triple_mchar} }
{ \@@_nprimes:Nn #1 {#2} }
}
}
{
\@@_nprimes:Nn #1 {#2}
}
}
% \end{macrocode}
%
% Scanning is annoying because I'm too lazy to do it for the general case.
%
% \begin{macrocode}
\cs_new:Npn \@@_scan_prime:
{
\cs_set_eq:NN \@@_superscript:n \use:n
\int_zero:N \l_@@_primecount_int
\@@_scanprime_collect:N \@@_prime_single_mchar
}
\cs_new:Npn \@@_scan_dprime:
{
\cs_set_eq:NN \@@_superscript:n \use:n
\int_set:Nn \l_@@_primecount_int {1}
\@@_scanprime_collect:N \@@_prime_single_mchar
}
\cs_new:Npn \@@_scan_trprime:
{
\cs_set_eq:NN \@@_superscript:n \use:n
\int_set:Nn \l_@@_primecount_int {2}
\@@_scanprime_collect:N \@@_prime_single_mchar
}
\cs_new:Npn \@@_scan_qprime:
{
\cs_set_eq:NN \@@_superscript:n \use:n
\int_set:Nn \l_@@_primecount_int {3}
\@@_scanprime_collect:N \@@_prime_single_mchar
}
\cs_new:Npn \@@_scan_sup_prime:
{
\int_zero:N \l_@@_primecount_int
\@@_scanprime_collect:N \@@_prime_single_mchar
}
\cs_new:Npn \@@_scan_sup_dprime:
{
\int_set:Nn \l_@@_primecount_int {1}
\@@_scanprime_collect:N \@@_prime_single_mchar
}
\cs_new:Npn \@@_scan_sup_trprime:
{
\int_set:Nn \l_@@_primecount_int {2}
\@@_scanprime_collect:N \@@_prime_single_mchar
}
\cs_new:Npn \@@_scan_sup_qprime:
{
\int_set:Nn \l_@@_primecount_int {3}
\@@_scanprime_collect:N \@@_prime_single_mchar
}
\cs_new:Nn \@@_scanprime_collect:N
{
\int_incr:N \l_@@_primecount_int
\peek_meaning_remove:NTF '
{ \@@_scanprime_collect:N #1 }
{
\peek_meaning_remove:NTF \@@_scan_prime:
{ \@@_scanprime_collect:N #1 }
{
\peek_meaning_remove:NTF ^^^^2032
{ \@@_scanprime_collect:N #1 }
{
\peek_meaning_remove:NTF \@@_scan_dprime:
{
\int_incr:N \l_@@_primecount_int
\@@_scanprime_collect:N #1
}
{
\peek_meaning_remove:NTF ^^^^2033
{
\int_incr:N \l_@@_primecount_int
\@@_scanprime_collect:N #1
}
{
\peek_meaning_remove:NTF \@@_scan_trprime:
{
\int_add:Nn \l_@@_primecount_int {2}
\@@_scanprime_collect:N #1
}
{
\peek_meaning_remove:NTF ^^^^2034
{
\int_add:Nn \l_@@_primecount_int {2}
\@@_scanprime_collect:N #1
}
{
\peek_meaning_remove:NTF \@@_scan_qprime:
{
\int_add:Nn \l_@@_primecount_int {3}
\@@_scanprime_collect:N #1
}
{
\peek_meaning_remove:NTF ^^^^2057
{
\int_add:Nn \l_@@_primecount_int {3}
\@@_scanprime_collect:N #1
}
{
\@@_nprimes_select:nn {#1} {\l_@@_primecount_int}
}
}
}
}
}
}
}
}
}
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Npn \@@_scan_backprime:
{
\cs_set_eq:NN \@@_superscript:n \use:n
\int_zero:N \l_@@_primecount_int
\@@_scanbackprime_collect:N \@@_backprime_single_mchar
}
\cs_new:Npn \@@_scan_backdprime:
{
\cs_set_eq:NN \@@_superscript:n \use:n
\int_set:Nn \l_@@_primecount_int {1}
\@@_scanbackprime_collect:N \@@_backprime_single_mchar
}
\cs_new:Npn \@@_scan_backtrprime:
{
\cs_set_eq:NN \@@_superscript:n \use:n
\int_set:Nn \l_@@_primecount_int {2}
\@@_scanbackprime_collect:N \@@_backprime_single_mchar
}
\cs_new:Npn \@@_scan_sup_backprime:
{
\int_zero:N \l_@@_primecount_int
\@@_scanbackprime_collect:N \@@_backprime_single_mchar
}
\cs_new:Npn \@@_scan_sup_backdprime:
{
\int_set:Nn \l_@@_primecount_int {1}
\@@_scanbackprime_collect:N \@@_backprime_single_mchar
}
\cs_new:Npn \@@_scan_sup_backtrprime:
{
\int_set:Nn \l_@@_primecount_int {2}
\@@_scanbackprime_collect:N \@@_backprime_single_mchar
}
\cs_new:Nn \@@_scanbackprime_collect:N
{
\int_incr:N \l_@@_primecount_int
\peek_meaning_remove:NTF `
{
\@@_scanbackprime_collect:N #1
}
{
\peek_meaning_remove:NTF \@@_scan_backprime:
{
\@@_scanbackprime_collect:N #1
}
{
\peek_meaning_remove:NTF ^^^^2035
{
\@@_scanbackprime_collect:N #1
}
{
\peek_meaning_remove:NTF \@@_scan_backdprime:
{
\int_incr:N \l_@@_primecount_int
\@@_scanbackprime_collect:N #1
}
{
\peek_meaning_remove:NTF ^^^^2036
{
\int_incr:N \l_@@_primecount_int
\@@_scanbackprime_collect:N #1
}
{
\peek_meaning_remove:NTF \@@_scan_backtrprime:
{
\int_add:Nn \l_@@_primecount_int {2}
\@@_scanbackprime_collect:N #1
}
{
\peek_meaning_remove:NTF ^^^^2037
{
\int_add:Nn \l_@@_primecount_int {2}
\@@_scanbackprime_collect:N #1
}
{
\@@_nbackprimes_select:nn {#1} {\l_@@_primecount_int}
}
}
}
}
}
}
}
}
% \end{macrocode}
%
% \begin{macrocode}
\AtBeginDocument { \@@_define_prime_commands: \@@_define_prime_chars: }
\cs_new:Nn \@@_define_prime_commands:
{
\cs_set_eq:NN \prime \@@_prime_single_mchar
\cs_set_eq:NN \dprime \@@_prime_double_mchar
\cs_set_eq:NN \trprime \@@_prime_triple_mchar
\cs_set_eq:NN \qprime \@@_prime_quad_mchar
\cs_set_eq:NN \backprime \@@_backprime_single_mchar
\cs_set_eq:NN \backdprime \@@_backprime_double_mchar
\cs_set_eq:NN \backtrprime \@@_backprime_triple_mchar
}
% \end{macrocode}
%
% \begin{macrocode}
\group_begin:
\char_set_catcode_active:N \'
\char_set_catcode_active:N \`
\char_set_catcode_active:n {"2032}
\char_set_catcode_active:n {"2033}
\char_set_catcode_active:n {"2034}
\char_set_catcode_active:n {"2057}
\char_set_catcode_active:n {"2035}
\char_set_catcode_active:n {"2036}
\char_set_catcode_active:n {"2037}
\cs_gset:Nn \@@_define_prime_chars:
{
\cs_set_eq:NN ' \@@_scan_sup_prime:
\cs_set_eq:NN ^^^^2032 \@@_scan_sup_prime:
\cs_set_eq:NN ^^^^2033 \@@_scan_sup_dprime:
\cs_set_eq:NN ^^^^2034 \@@_scan_sup_trprime:
\cs_set_eq:NN ^^^^2057 \@@_scan_sup_qprime:
\cs_set_eq:NN ` \@@_scan_sup_backprime:
\cs_set_eq:NN ^^^^2035 \@@_scan_sup_backprime:
\cs_set_eq:NN ^^^^2036 \@@_scan_sup_backdprime:
\cs_set_eq:NN ^^^^2037 \@@_scan_sup_backtrprime:
}
\group_end:
\cs_set_eq:NN \active@math@prime \@@_scan_sup_prime:
% \end{macrocode}
%
%
% \begin{macrocode}
%</package>
% \end{macrocode}
\endinput
% /©
%
% ------------------------------------------------
% The UNICODE-MATH package <wspr.io/unicode-math>
% ------------------------------------------------
% This package is free software and may be redistributed and/or modified under
% the conditions of the LaTeX Project Public License, version 1.3c or higher
% (your choice): <http://www.latex-project.org/lppl/>.
% ------------------------------------------------
% Copyright 2006-2019 Will Robertson, LPPL "maintainer"
% Copyright 2010-2017 Philipp Stephani
% Copyright 2011-2017 Joseph Wright
% Copyright 2012-2015 Khaled Hosny
% ------------------------------------------------
%
% ©/