-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_segmentation.py
executable file
·59 lines (51 loc) · 2.22 KB
/
train_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import paddlex as pdx
from paddlex import transforms as T
# 定义训练和验证时的transforms
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
train_transforms = T.Compose([
T.Resize(target_size=512),
T.RandomHorizontalFlip(),
T.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
eval_transforms = T.Compose([
T.Resize(target_size=512),
T.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
# 下载和解压指针刻度分割数据集,如果已经预先下载,可注释掉下面两行
# meter_seg_dataset = 'https://bj.bcebos.com/paddlex/examples/meter_reader/datasets/meter_seg.tar.gz'
# pdx.utils.download_and_decompress(meter_seg_dataset, path='./')
# 定义训练和验证所用的数据集
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/datasets/seg_dataset.py#L22
train_dataset = pdx.datasets.SegDataset(
data_dir='datasets/meter_deep',
file_list='datasets/meter_deep/train.txt',
label_list='datasets/meter_deep/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.SegDataset(
data_dir='datasets/meter_deep',
file_list='datasets/meter_deep/val.txt',
label_list='datasets/meter_deep/labels.txt',
transforms=eval_transforms,
shuffle=False)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标
# visualdl --logdir deeplabv3plus/checkpoints/vdl_log --port 8001
num_classes = len(train_dataset.labels)
model = pdx.seg.DeepLabV3P(num_classes=num_classes, backbone='ResNet50_vd', use_mixed_loss=True)
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/segmenter.py#L150
# 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
model.train(
num_epochs=20,
train_dataset=train_dataset,
train_batch_size=4,
eval_dataset=eval_dataset,
pretrain_weights='IMAGENET',
learning_rate=0.1,
save_dir='deeplabv3plus/checkpoints',
use_vdl=True
)