From 30106906883b61e2d81cbb6a9793fd6d385efe1e Mon Sep 17 00:00:00 2001 From: Jacob Lee Date: Mon, 12 Aug 2024 15:53:40 -0700 Subject: [PATCH] docs[patch]: Chat model docstrings (#6512) --- .../docs/integrations/chat/mistral.ipynb | 2 +- .../src/chat_models/fireworks.ts | 2 + .../src/chat_models/togetherai.ts | 366 +++++++++++++++++- libs/langchain-mistralai/src/chat_models.ts | 325 +++++++++++++++- libs/langchain-ollama/src/chat_models.ts | 297 +++++++++++++- 5 files changed, 972 insertions(+), 20 deletions(-) diff --git a/docs/core_docs/docs/integrations/chat/mistral.ipynb b/docs/core_docs/docs/integrations/chat/mistral.ipynb index 8f2a6fa16f6f..9822a2aa8b4d 100644 --- a/docs/core_docs/docs/integrations/chat/mistral.ipynb +++ b/docs/core_docs/docs/integrations/chat/mistral.ipynb @@ -42,7 +42,7 @@ "\n", "## Setup\n", "\n", - "To access `ChatMistralAI` models you'll need to create a `ChatMistralAI` account, get an API key, and install the `@langchain/mistralai` integration package.\n", + "To access Mistral AI models you'll need to create a Mistral AI account, get an API key, and install the `@langchain/mistralai` integration package.\n", "\n", "### Credentials\n", "\n", diff --git a/libs/langchain-community/src/chat_models/fireworks.ts b/libs/langchain-community/src/chat_models/fireworks.ts index f6bf28824258..36878eeced80 100644 --- a/libs/langchain-community/src/chat_models/fireworks.ts +++ b/libs/langchain-community/src/chat_models/fireworks.ts @@ -413,6 +413,8 @@ export type ChatFireworksCallOptions = Partial< * *
* + *
+ * * Usage Metadata * * ```typescript diff --git a/libs/langchain-community/src/chat_models/togetherai.ts b/libs/langchain-community/src/chat_models/togetherai.ts index b377024406a1..9d512e9a27a9 100644 --- a/libs/langchain-community/src/chat_models/togetherai.ts +++ b/libs/langchain-community/src/chat_models/togetherai.ts @@ -44,23 +44,371 @@ export interface ChatTogetherAIInput } /** - * Wrapper around TogetherAI API for large language models fine-tuned for chat + * TogetherAI chat model integration. * - * TogetherAI API is compatible to the OpenAI API with some limitations. View the + * The TogetherAI API is compatible to the OpenAI API with some limitations. View the * full API ref at: * @link {https://docs.together.ai/reference/chat-completions} * - * To use, you should have the `TOGETHER_AI_API_KEY` environment variable set. - * @example + * Setup: + * Install `@langchain/community` and set an environment variable named `TOGETHER_AI_API_KEY`. + * + * ```bash + * npm install @langchain/community + * export TOGETHER_AI_API_KEY="your-api-key" + * ``` + * + * ## [Constructor args](https://api.js.langchain.com/classes/_langchain_community.chat_models_togetherai.ChatTogetherAI.html#constructor) + * + * ## [Runtime args](https://api.js.langchain.com/interfaces/_langchain_community.chat_models_togetherai.ChatTogetherAICallOptions.html) + * + * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc. + * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below: + * + * ```typescript + * // When calling `.bind`, call options should be passed via the first argument + * const llmWithArgsBound = llm.bind({ + * stop: ["\n"], + * tools: [...], + * }); + * + * // When calling `.bindTools`, call options should be passed via the second argument + * const llmWithTools = llm.bindTools( + * [...], + * { + * tool_choice: "auto", + * } + * ); + * ``` + * + * ## Examples + * + *
+ * Instantiate + * * ```typescript - * const model = new ChatTogetherAI({ - * temperature: 0.9, - * apiKey: process.env.TOGETHER_AI_API_KEY, + * import { ChatTogetherAI } from '@langchain/community/chat_models/togetherai'; + * + * const llm = new ChatTogetherAI({ + * model: "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo", + * temperature: 0, + * // other params... * }); + * ``` + *
+ * + *
+ * + *
+ * Invoking + * + * ```typescript + * const input = `Translate "I love programming" into French.`; + * + * // Models also accept a list of chat messages or a formatted prompt + * const result = await llm.invoke(input); + * console.log(result); + * ``` + * + * ```txt + * AIMessage { + * "id": "8b23ea7bcc4c924b-MUC", + * "content": "\"J'adore programmer\"", + * "additional_kwargs": {}, + * "response_metadata": { + * "tokenUsage": { + * "completionTokens": 8, + * "promptTokens": 19, + * "totalTokens": 27 + * }, + * "finish_reason": "eos" + * }, + * "tool_calls": [], + * "invalid_tool_calls": [], + * "usage_metadata": { + * "input_tokens": 19, + * "output_tokens": 8, + * "total_tokens": 27 + * } + * } + * ``` + *
+ * + *
+ * + *
+ * Streaming Chunks + * + * ```typescript + * for await (const chunk of await llm.stream(input)) { + * console.log(chunk); + * } + * ``` + * + * ```txt + * AIMessageChunk { + * "id": "8b23eb602fb19263-MUC", + * "content": "\"", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0, + * "finish_reason": null + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "id": "8b23eb602fb19263-MUC", + * "content": "J", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0, + * "finish_reason": null + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "id": "8b23eb602fb19263-MUC", + * "content": "'", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0, + * "finish_reason": null + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "id": "8b23eb602fb19263-MUC", + * "content": "ad", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0, + * "finish_reason": null + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "id": "8b23eb602fb19263-MUC", + * "content": "ore", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0, + * "finish_reason": null + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "id": "8b23eb602fb19263-MUC", + * "content": " programmer", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0, + * "finish_reason": null + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "id": "8b23eb602fb19263-MUC", + * "content": "\"", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0, + * "finish_reason": null + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "id": "8b23eb602fb19263-MUC", + * "content": "", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0, + * "finish_reason": "eos" + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "content": "", + * "additional_kwargs": {}, + * "response_metadata": {}, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [], + * "usage_metadata": { + * "input_tokens": 19, + * "output_tokens": 8, + * "total_tokens": 27 + * } + * } + * ``` + *
+ * + *
+ * + *
+ * Aggregate Streamed Chunks + * + * ```typescript + * import { AIMessageChunk } from '@langchain/core/messages'; + * import { concat } from '@langchain/core/utils/stream'; + * + * const stream = await llm.stream(input); + * let full: AIMessageChunk | undefined; + * for await (const chunk of stream) { + * full = !full ? chunk : concat(full, chunk); + * } + * console.log(full); + * ``` + * + * ```txt + * AIMessageChunk { + * "id": "8b23ecd42e469236-MUC", + * "content": "\"J'adore programmer\"", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0, + * "finish_reason": "eos" + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [], + * "usage_metadata": { + * "input_tokens": 19, + * "output_tokens": 8, + * "total_tokens": 27 + * } + * } + * ``` + *
+ * + *
+ * + *
+ * Bind tools + * + * ```typescript + * import { z } from 'zod'; + * + * const GetWeather = { + * name: "GetWeather", + * description: "Get the current weather in a given location", + * schema: z.object({ + * location: z.string().describe("The city and state, e.g. San Francisco, CA") + * }), + * } + * + * const GetPopulation = { + * name: "GetPopulation", + * description: "Get the current population in a given location", + * schema: z.object({ + * location: z.string().describe("The city and state, e.g. San Francisco, CA") + * }), + * } + * + * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]); + * const aiMsg = await llmWithTools.invoke( + * "Which city is hotter today and which is bigger: LA or NY? Respond with JSON and use tools." + * ); + * console.log(aiMsg.tool_calls); + * ``` + * + * ```txt + * [ + * { + * name: 'GetWeather', + * args: { location: 'Los Angeles' }, + * type: 'tool_call', + * id: 'call_q8i4zx1udqjjnou2bzbrg8ms' + * } + * ] + * ``` + *
+ * + *
+ * + *
+ * Structured Output + * + * ```typescript + * import { z } from 'zod'; + * + * const Joke = z.object({ + * setup: z.string().describe("The setup of the joke"), + * punchline: z.string().describe("The punchline to the joke"), + * rating: z.number().optional().describe("How funny the joke is, from 1 to 10") + * }).describe('Joke to tell user.'); * - * const response = await model.invoke([new HumanMessage("Hello there!")]); - * console.log(response); + * const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" }); + * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats"); + * console.log(jokeResult); * ``` + * + * ```txt + * { + * setup: 'Why did the cat join a band', + * punchline: 'Because it wanted to be the purr-cussionist' + * } + * ``` + *
+ * + *
+ * + *
+ * Usage Metadata + * + * ```typescript + * const aiMsgForMetadata = await llm.invoke(input); + * console.log(aiMsgForMetadata.usage_metadata); + * ``` + * + * ```txt + * { input_tokens: 19, output_tokens: 65, total_tokens: 84 } + * ``` + *
+ * + *
+ * + *
+ * Response Metadata + * + * ```typescript + * const aiMsgForResponseMetadata = await llm.invoke(input); + * console.log(aiMsgForResponseMetadata.response_metadata); + * ``` + * + * ```txt + * { + * tokenUsage: { completionTokens: 91, promptTokens: 19, totalTokens: 110 }, + * finish_reason: 'eos' + * } + * ``` + *
+ * + *
*/ export class ChatTogetherAI extends ChatOpenAI { static lc_name() { diff --git a/libs/langchain-mistralai/src/chat_models.ts b/libs/langchain-mistralai/src/chat_models.ts index c78776d4701f..b8d1a6348f70 100644 --- a/libs/langchain-mistralai/src/chat_models.ts +++ b/libs/langchain-mistralai/src/chat_models.ts @@ -410,7 +410,330 @@ function _convertToolToMistralTool( } /** - * Integration with a chat model. + * Mistral AI chat model integration. + * + * Setup: + * Install `@langchain/mistralai` and set an environment variable named `MISTRAL_API_KEY`. + * + * ```bash + * npm install @langchain/mistralai + * export MISTRAL_API_KEY="your-api-key" + * ``` + * + * ## [Constructor args](https://api.js.langchain.com/classes/_langchain_mistralai.ChatMistralAI.html#constructor) + * + * ## [Runtime args](https://api.js.langchain.com/interfaces/_langchain_mistralai.ChatMistralAICallOptions.html) + * + * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc. + * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below: + * + * ```typescript + * // When calling `.bind`, call options should be passed via the first argument + * const llmWithArgsBound = llm.bind({ + * stop: ["\n"], + * tools: [...], + * }); + * + * // When calling `.bindTools`, call options should be passed via the second argument + * const llmWithTools = llm.bindTools( + * [...], + * { + * tool_choice: "auto", + * } + * ); + * ``` + * + * ## Examples + * + *
+ * Instantiate + * + * ```typescript + * import { ChatMistralAI } from '@langchain/mistralai'; + * + * const llm = new ChatMistralAI({ + * model: "mistral-large-2402", + * temperature: 0, + * // other params... + * }); + * ``` + *
+ * + *
+ * + *
+ * Invoking + * + * ```typescript + * const input = `Translate "I love programming" into French.`; + * + * // Models also accept a list of chat messages or a formatted prompt + * const result = await llm.invoke(input); + * console.log(result); + * ``` + * + * ```txt + * AIMessage { + * "content": "The translation of \"I love programming\" into French is \"J'aime la programmation\". Here's the breakdown:\n\n- \"I\" translates to \"Je\"\n- \"love\" translates to \"aime\"\n- \"programming\" translates to \"la programmation\"\n\nSo, \"J'aime la programmation\" means \"I love programming\" in French.", + * "additional_kwargs": {}, + * "response_metadata": { + * "tokenUsage": { + * "completionTokens": 89, + * "promptTokens": 13, + * "totalTokens": 102 + * }, + * "finish_reason": "stop" + * }, + * "tool_calls": [], + * "invalid_tool_calls": [], + * "usage_metadata": { + * "input_tokens": 13, + * "output_tokens": 89, + * "total_tokens": 102 + * } + * } + * ``` + *
+ * + *
+ * + *
+ * Streaming Chunks + * + * ```typescript + * for await (const chunk of await llm.stream(input)) { + * console.log(chunk); + * } + * ``` + * + * ```txt + * AIMessageChunk { + * "content": "The", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0 + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "content": " translation", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0 + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "content": " of", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0 + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "content": " \"", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0 + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "content": "I", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0 + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "content": ".", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0 + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + *} + *AIMessageChunk { + * "content": "", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0 + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [], + * "usage_metadata": { + * "input_tokens": 13, + * "output_tokens": 89, + * "total_tokens": 102 + * } + *} + * ``` + *
+ * + *
+ * + *
+ * Aggregate Streamed Chunks + * + * ```typescript + * import { AIMessageChunk } from '@langchain/core/messages'; + * import { concat } from '@langchain/core/utils/stream'; + * + * const stream = await llm.stream(input); + * let full: AIMessageChunk | undefined; + * for await (const chunk of stream) { + * full = !full ? chunk : concat(full, chunk); + * } + * console.log(full); + * ``` + * + * ```txt + * AIMessageChunk { + * "content": "The translation of \"I love programming\" into French is \"J'aime la programmation\". Here's the breakdown:\n\n- \"I\" translates to \"Je\"\n- \"love\" translates to \"aime\"\n- \"programming\" translates to \"la programmation\"\n\nSo, \"J'aime la programmation\" means \"I love programming\" in French.", + * "additional_kwargs": {}, + * "response_metadata": { + * "prompt": 0, + * "completion": 0 + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [], + * "usage_metadata": { + * "input_tokens": 13, + * "output_tokens": 89, + * "total_tokens": 102 + * } + * } + * ``` + *
+ * + *
+ * + *
+ * Bind tools + * + * ```typescript + * import { z } from 'zod'; + * + * const GetWeather = { + * name: "GetWeather", + * description: "Get the current weather in a given location", + * schema: z.object({ + * location: z.string().describe("The city and state, e.g. San Francisco, CA") + * }), + * } + * + * const GetPopulation = { + * name: "GetPopulation", + * description: "Get the current population in a given location", + * schema: z.object({ + * location: z.string().describe("The city and state, e.g. San Francisco, CA") + * }), + * } + * + * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]); + * const aiMsg = await llmWithTools.invoke( + * "Which city is hotter today and which is bigger: LA or NY?" + * ); + * console.log(aiMsg.tool_calls); + * ``` + * + * ```txt + * [ + * { + * name: 'GetWeather', + * args: { location: 'Los Angeles, CA' }, + * type: 'tool_call', + * id: '47i216yko' + * }, + * { + * name: 'GetWeather', + * args: { location: 'New York, NY' }, + * type: 'tool_call', + * id: 'nb3v8Fpcn' + * }, + * { + * name: 'GetPopulation', + * args: { location: 'Los Angeles, CA' }, + * type: 'tool_call', + * id: 'EedWzByIB' + * }, + * { + * name: 'GetPopulation', + * args: { location: 'New York, NY' }, + * type: 'tool_call', + * id: 'jLdLia7zC' + * } + * ] + * ``` + *
+ * + *
+ * + *
+ * Structured Output + * + * ```typescript + * import { z } from 'zod'; + * + * const Joke = z.object({ + * setup: z.string().describe("The setup of the joke"), + * punchline: z.string().describe("The punchline to the joke"), + * rating: z.number().optional().describe("How funny the joke is, from 1 to 10") + * }).describe('Joke to tell user.'); + * + * const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" }); + * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats"); + * console.log(jokeResult); + * ``` + * + * ```txt + * { + * setup: "Why don't cats play poker in the jungle?", + * punchline: 'Too many cheetahs!', + * rating: 7 + * } + * ``` + *
+ * + *
+ * + *
+ * Usage Metadata + * + * ```typescript + * const aiMsgForMetadata = await llm.invoke(input); + * console.log(aiMsgForMetadata.usage_metadata); + * ``` + * + * ```txt + * { input_tokens: 13, output_tokens: 89, total_tokens: 102 } + * ``` + *
+ * + *
*/ export class ChatMistralAI< CallOptions extends ChatMistralAICallOptions = ChatMistralAICallOptions diff --git a/libs/langchain-ollama/src/chat_models.ts b/libs/langchain-ollama/src/chat_models.ts index 7c42b37ea1f3..8c8ea9fc66d1 100644 --- a/libs/langchain-ollama/src/chat_models.ts +++ b/libs/langchain-ollama/src/chat_models.ts @@ -82,22 +82,301 @@ export interface ChatOllamaInput } /** - * Integration with the Ollama SDK. + * Ollama chat model integration. + * + * Setup: + * Install `@langchain/ollama` and the Ollama app. + * + * ```bash + * npm install @langchain/ollama + * ``` + * + * ## [Constructor args](https://api.js.langchain.com/classes/_langchain_ollama.ChatOllama.html#constructor) + * + * ## [Runtime args](https://api.js.langchain.com/interfaces/_langchain_ollama.ChatOllamaCallOptions.html) + * + * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc. + * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below: + * + * ```typescript + * // When calling `.bind`, call options should be passed via the first argument + * const llmWithArgsBound = llm.bind({ + * stop: ["\n"], + * tools: [...], + * }); + * + * // When calling `.bindTools`, call options should be passed via the second argument + * const llmWithTools = llm.bindTools( + * [...], + * { + * tool_choice: "auto", + * } + * ); + * ``` + * + * ## Examples + * + *
+ * Instantiate * - * @example * ```typescript - * import { ChatOllama } from "@langchain/ollama"; + * import { ChatOllama } from '@langchain/ollama'; * - * const model = new ChatOllama({ - * model: "llama3", // Default model. + * const llm = new ChatOllama({ + * model: "llama-3.1:8b", + * temperature: 0, + * // other params... * }); + * ``` + *
+ * + *
+ * + *
+ * Invoking * - * const result = await model.invoke([ - * "human", - * "What is a good name for a company that makes colorful socks?", - * ]); + * ```typescript + * const input = `Translate "I love programming" into French.`; + * + * // Models also accept a list of chat messages or a formatted prompt + * const result = await llm.invoke(input); * console.log(result); * ``` + * + * ```txt + * AIMessage { + * "content": "The translation of \"I love programming\" into French is:\n\n\"J'adore programmer.\"", + * "additional_kwargs": {}, + * "response_metadata": { + * "model": "llama3.1:8b", + * "created_at": "2024-08-12T22:12:23.09468Z", + * "done_reason": "stop", + * "done": true, + * "total_duration": 3715571291, + * "load_duration": 35244375, + * "prompt_eval_count": 19, + * "prompt_eval_duration": 3092116000, + * "eval_count": 20, + * "eval_duration": 585789000 + * }, + * "tool_calls": [], + * "invalid_tool_calls": [], + * "usage_metadata": { + * "input_tokens": 19, + * "output_tokens": 20, + * "total_tokens": 39 + * } + * } + * ``` + *
+ * + *
+ * + *
+ * Streaming Chunks + * + * ```typescript + * for await (const chunk of await llm.stream(input)) { + * console.log(chunk); + * } + * ``` + * + * ```txt + * AIMessageChunk { + * "content": "The", + * "additional_kwargs": {}, + * "response_metadata": {}, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "content": " translation", + * "additional_kwargs": {}, + * "response_metadata": {}, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "content": " of", + * "additional_kwargs": {}, + * "response_metadata": {}, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "content": " \"", + * "additional_kwargs": {}, + * "response_metadata": {}, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "content": "I", + * "additional_kwargs": {}, + * "response_metadata": {}, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * ... + * AIMessageChunk { + * "content": "", + * "additional_kwargs": {}, + * "response_metadata": {}, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [] + * } + * AIMessageChunk { + * "content": "", + * "additional_kwargs": {}, + * "response_metadata": { + * "model": "llama3.1:8b", + * "created_at": "2024-08-12T22:13:22.22423Z", + * "done_reason": "stop", + * "done": true, + * "total_duration": 8599883208, + * "load_duration": 35975875, + * "prompt_eval_count": 19, + * "prompt_eval_duration": 7918195000, + * "eval_count": 20, + * "eval_duration": 643569000 + * }, + * "tool_calls": [], + * "tool_call_chunks": [], + * "invalid_tool_calls": [], + * "usage_metadata": { + * "input_tokens": 19, + * "output_tokens": 20, + * "total_tokens": 39 + * } + * } + * ``` + *
+ * + *
+ * + *
+ * Bind tools + * + * ```typescript + * import { z } from 'zod'; + * + * const GetWeather = { + * name: "GetWeather", + * description: "Get the current weather in a given location", + * schema: z.object({ + * location: z.string().describe("The city and state, e.g. San Francisco, CA") + * }), + * } + * + * const GetPopulation = { + * name: "GetPopulation", + * description: "Get the current population in a given location", + * schema: z.object({ + * location: z.string().describe("The city and state, e.g. San Francisco, CA") + * }), + * } + * + * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]); + * const aiMsg = await llmWithTools.invoke( + * "Which city is hotter today and which is bigger: LA or NY?" + * ); + * console.log(aiMsg.tool_calls); + * ``` + * + * ```txt + * [ + * { + * name: 'GetWeather', + * args: { location: 'Los Angeles, CA' }, + * id: '49410cad-2163-415e-bdcd-d26938a9c8c5', + * type: 'tool_call' + * }, + * { + * name: 'GetPopulation', + * args: { location: 'New York, NY' }, + * id: '39e230e4-63ec-4fae-9df0-21c3abe735ad', + * type: 'tool_call' + * } + * ] + * ``` + *
+ * + *
+ * + *
+ * Structured Output + * + * ```typescript + * import { z } from 'zod'; + * + * const Joke = z.object({ + * setup: z.string().describe("The setup of the joke"), + * punchline: z.string().describe("The punchline to the joke"), + * rating: z.number().optional().describe("How funny the joke is, from 1 to 10") + * }).describe('Joke to tell user.'); + * + * const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" }); + * const jokeResult = await structuredLlm.invoke("Tell me a joke about cats"); + * console.log(jokeResult); + * ``` + * + * ```txt + * { + * punchline: 'Why did the cat join a band? Because it wanted to be the purr-cussionist!', + * rating: 8, + * setup: 'A cat walks into a music store and asks the owner...' + * } + * ``` + *
+ * + *
+ * + *
+ * Usage Metadata + * + * ```typescript + * const aiMsgForMetadata = await llm.invoke(input); + * console.log(aiMsgForMetadata.usage_metadata); + * ``` + * + * ```txt + * { input_tokens: 19, output_tokens: 20, total_tokens: 39 } + * ``` + *
+ * + *
+ * + *
+ * Response Metadata + * + * ```typescript + * const aiMsgForResponseMetadata = await llm.invoke(input); + * console.log(aiMsgForResponseMetadata.response_metadata); + * ``` + * + * ```txt + * { + * model: 'llama3.1:8b', + * created_at: '2024-08-12T22:17:42.274795Z', + * done_reason: 'stop', + * done: true, + * total_duration: 6767071209, + * load_duration: 31628209, + * prompt_eval_count: 19, + * prompt_eval_duration: 6124504000, + * eval_count: 20, + * eval_duration: 608785000 + * } + * ``` + *
+ * + *
*/ export class ChatOllama extends BaseChatModel