From 23f5218817b23bbc252175db05de6e3114f4fedd Mon Sep 17 00:00:00 2001 From: bracesproul Date: Mon, 12 Aug 2024 14:38:31 -0700 Subject: [PATCH] updated langchain issues --- .../how_to/document_loader_markdown.ipynb | 2 +- .../docs/how_to/ensemble_retriever.mdx | 4 ++-- docs/core_docs/docs/how_to/multi_vector.mdx | 2 +- .../docs/how_to/multiple_queries.ipynb | 2 +- .../docs/how_to/parent_document_retriever.mdx | 2 +- .../docs/how_to/reduce_retrieval_latency.mdx | 2 +- docs/core_docs/docs/how_to/sql_prompting.mdx | 2 +- .../docs/how_to/time_weighted_vectorstore.mdx | 2 +- docs/core_docs/docs/how_to/vectorstores.mdx | 2 +- .../file_loaders/directory.ipynb | 6 ++--- .../document_loaders/file_loaders/text.ipynb | 6 ++--- .../file_loaders/unstructured.ipynb | 2 +- .../document_loaders/web_loaders/sitemap.mdx | 2 +- .../retrievers/self_query/chroma.ipynb | 4 ++-- .../retrievers/self_query/hnswlib.ipynb | 4 ++-- .../retrievers/self_query/memory.ipynb | 6 ++--- .../retrievers/self_query/pinecone.ipynb | 4 ++-- .../retrievers/self_query/qdrant.ipynb | 4 ++-- .../retrievers/self_query/supabase.ipynb | 4 ++-- .../retrievers/self_query/vectara.ipynb | 4 ++-- .../retrievers/self_query/weaviate.ipynb | 4 ++-- .../integrations/stores/file_system.ipynb | 4 ++-- .../vectorstores/googlevertexai.mdx | 2 +- .../integrations/vectorstores/memory.ipynb | 6 ++--- docs/core_docs/docs/tutorials/rag.ipynb | 4 ++-- docs/core_docs/docs/tutorials/sql_qa.mdx | 4 ++-- langchain/src/chains/load.ts | 2 +- .../openai_functions/structured_output.ts | 4 ++-- langchain/src/chains/serde.ts | 24 +++++++++---------- 29 files changed, 60 insertions(+), 60 deletions(-) diff --git a/docs/core_docs/docs/how_to/document_loader_markdown.ipynb b/docs/core_docs/docs/how_to/document_loader_markdown.ipynb index 5da05fd745d4..c84a92f18508 100644 --- a/docs/core_docs/docs/how_to/document_loader_markdown.ipynb +++ b/docs/core_docs/docs/how_to/document_loader_markdown.ipynb @@ -16,7 +16,7 @@ "- Basic usage;\n", "- Parsing of Markdown into elements such as titles, list items, and text.\n", "\n", - "LangChain implements an [UnstructuredLoader](https://v02.api.js.langchain.com/classes/langchain_document_loaders_fs_unstructured.UnstructuredLoader.html) class.\n", + "LangChain implements an [UnstructuredLoader](https://v02.api.js.langchain.com/classes/langchain.document_loaders_fs_unstructured.UnstructuredLoader.html) class.\n", "\n", ":::info Prerequisites\n", "\n", diff --git a/docs/core_docs/docs/how_to/ensemble_retriever.mdx b/docs/core_docs/docs/how_to/ensemble_retriever.mdx index a4aadb412f2c..218a76bcff8c 100644 --- a/docs/core_docs/docs/how_to/ensemble_retriever.mdx +++ b/docs/core_docs/docs/how_to/ensemble_retriever.mdx @@ -9,13 +9,13 @@ This guide assumes familiarity with the following concepts: ::: -The [EnsembleRetriever](https://api.js.langchain.com/classes/langchain_retrievers_ensemble.EnsembleRetriever.html) supports ensembling of results from multiple retrievers. It is initialized with a list of [BaseRetriever](https://api.js.langchain.com/classes/langchain_core.retrievers.BaseRetriever.html) objects. EnsembleRetrievers rerank the results of the constituent retrievers based on the [Reciprocal Rank Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) algorithm. +The [EnsembleRetriever](https://api.js.langchain.com/classes/langchain.retrievers_ensemble.EnsembleRetriever.html) supports ensembling of results from multiple retrievers. It is initialized with a list of [BaseRetriever](https://api.js.langchain.com/classes/langchain_core.retrievers.BaseRetriever.html) objects. EnsembleRetrievers rerank the results of the constituent retrievers based on the [Reciprocal Rank Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) algorithm. By leveraging the strengths of different algorithms, the `EnsembleRetriever` can achieve better performance than any single algorithm. One useful pattern is to combine a keyword matching retriever with a dense retriever (like embedding similarity), because their strengths are complementary. This can be considered a form of "hybrid search". The sparse retriever is good at finding relevant documents based on keywords, while the dense retriever is good at finding relevant documents based on semantic similarity. -Below we demonstrate ensembling of a [simple custom retriever](/docs/how_to/custom_retriever/) that simply returns documents that directly contain the input query with a retriever derived from a [demo, in-memory, vector store](https://api.js.langchain.com/classes/langchain_vectorstores_memory.MemoryVectorStore.html). +Below we demonstrate ensembling of a [simple custom retriever](/docs/how_to/custom_retriever/) that simply returns documents that directly contain the input query with a retriever derived from a [demo, in-memory, vector store](https://api.js.langchain.com/classes/langchain.vectorstores_memory.MemoryVectorStore.html). import CodeBlock from "@theme/CodeBlock"; import Example from "@examples/retrievers/ensemble_retriever.ts"; diff --git a/docs/core_docs/docs/how_to/multi_vector.mdx b/docs/core_docs/docs/how_to/multi_vector.mdx index e81a96d9802f..a0feb0b7b782 100644 --- a/docs/core_docs/docs/how_to/multi_vector.mdx +++ b/docs/core_docs/docs/how_to/multi_vector.mdx @@ -11,7 +11,7 @@ This guide assumes familiarity with the following concepts: ::: Embedding different representations of an original document, then returning the original document when any of the representations result in a search hit, can allow you to -tune and improve your retrieval performance. LangChain has a base [`MultiVectorRetriever`](https://v02.api.js.langchain.com/classes/langchain_retrievers_multi_vector.MultiVectorRetriever.html) designed to do just this! +tune and improve your retrieval performance. LangChain has a base [`MultiVectorRetriever`](https://v02.api.js.langchain.com/classes/langchain.retrievers_multi_vector.MultiVectorRetriever.html) designed to do just this! A lot of the complexity lies in how to create the multiple vectors per document. This guide covers some of the common ways to create those vectors and use the `MultiVectorRetriever`. diff --git a/docs/core_docs/docs/how_to/multiple_queries.ipynb b/docs/core_docs/docs/how_to/multiple_queries.ipynb index e20287378501..a69c64a70fe4 100644 --- a/docs/core_docs/docs/how_to/multiple_queries.ipynb +++ b/docs/core_docs/docs/how_to/multiple_queries.ipynb @@ -20,7 +20,7 @@ "But retrieval may produce different results with subtle changes in query wording or if the embeddings do not capture the semantics of the data well.\n", "Prompt engineering / tuning is sometimes done to manually address these problems, but can be tedious.\n", "\n", - "The [`MultiQueryRetriever`](https://v02.api.js.langchain.com/classes/langchain_retrievers_multi_query.MultiQueryRetriever.html) automates the process of prompt tuning by using an LLM to generate multiple queries from different perspectives for a given user input query.\n", + "The [`MultiQueryRetriever`](https://v02.api.js.langchain.com/classes/langchain.retrievers_multi_query.MultiQueryRetriever.html) automates the process of prompt tuning by using an LLM to generate multiple queries from different perspectives for a given user input query.\n", "For each query, it retrieves a set of relevant documents and takes the unique union across all queries to get a larger set of potentially relevant documents.\n", "By generating multiple perspectives on the same question, the `MultiQueryRetriever` can help overcome some of the limitations of the distance-based retrieval and get a richer set of results.\n", "\n", diff --git a/docs/core_docs/docs/how_to/parent_document_retriever.mdx b/docs/core_docs/docs/how_to/parent_document_retriever.mdx index dd024b715d66..235c1d6d09d6 100644 --- a/docs/core_docs/docs/how_to/parent_document_retriever.mdx +++ b/docs/core_docs/docs/how_to/parent_document_retriever.mdx @@ -21,7 +21,7 @@ When splitting documents for retrieval, there are often conflicting desires: 1. You may want to have small documents, so that their embeddings can most accurately reflect their meaning. If documents are too long, then the embeddings can lose meaning. 2. You want to have long enough documents that the context of each chunk is retained. -The [`ParentDocumentRetriever`](https://v02.api.js.langchain.com/classes/langchain_retrievers_parent_document.ParentDocumentRetriever.html) strikes that balance by splitting and storing small chunks of data. During retrieval, it first fetches the small chunks but then looks up the parent ids for those chunks and returns those larger documents. +The [`ParentDocumentRetriever`](https://v02.api.js.langchain.com/classes/langchain.retrievers_parent_document.ParentDocumentRetriever.html) strikes that balance by splitting and storing small chunks of data. During retrieval, it first fetches the small chunks but then looks up the parent ids for those chunks and returns those larger documents. Note that "parent document" refers to the document that a small chunk originated from. This can either be the whole raw document OR a larger chunk. diff --git a/docs/core_docs/docs/how_to/reduce_retrieval_latency.mdx b/docs/core_docs/docs/how_to/reduce_retrieval_latency.mdx index 218c1b868790..85e89dae1774 100644 --- a/docs/core_docs/docs/how_to/reduce_retrieval_latency.mdx +++ b/docs/core_docs/docs/how_to/reduce_retrieval_latency.mdx @@ -12,7 +12,7 @@ This guide assumes familiarity with the following concepts: ::: One way to reduce retrieval latency is through a technique called "Adaptive Retrieval". -The [`MatryoshkaRetriever`](https://v02.api.js.langchain.com/classes/langchain_retrievers_matryoshka_retriever.MatryoshkaRetriever.html) uses the +The [`MatryoshkaRetriever`](https://v02.api.js.langchain.com/classes/langchain.retrievers_matryoshka_retriever.MatryoshkaRetriever.html) uses the Matryoshka Representation Learning (MRL) technique to retrieve documents for a given query in two steps: - **First-pass**: Uses a lower dimensional sub-vector from the MRL embedding for an initial, fast, diff --git a/docs/core_docs/docs/how_to/sql_prompting.mdx b/docs/core_docs/docs/how_to/sql_prompting.mdx index 52c7fbb7d087..25d2ac9b4ed1 100644 --- a/docs/core_docs/docs/how_to/sql_prompting.mdx +++ b/docs/core_docs/docs/how_to/sql_prompting.mdx @@ -46,7 +46,7 @@ import DbCheck from "@examples/use_cases/sql/db_check.ts"; ## Dialect-specific prompting One of the simplest things we can do is make our prompt specific to the SQL dialect we're using. -When using the built-in [`createSqlQueryChain`](https://v02.api.js.langchain.com/functions/langchain_chains_sql_db.createSqlQueryChain.html) and [`SqlDatabase`](https://v02.api.js.langchain.com/classes/langchain_sql_db.SqlDatabase.html), this is handled for you for any of the following dialects: +When using the built-in [`createSqlQueryChain`](https://v02.api.js.langchain.com/functions/langchain.chains_sql_db.createSqlQueryChain.html) and [`SqlDatabase`](https://v02.api.js.langchain.com/classes/langchain.sql_db.SqlDatabase.html), this is handled for you for any of the following dialects: import DialectExample from "@examples/use_cases/sql/prompting/list_dialects.ts"; diff --git a/docs/core_docs/docs/how_to/time_weighted_vectorstore.mdx b/docs/core_docs/docs/how_to/time_weighted_vectorstore.mdx index bec44045f35d..b218eb68bf12 100644 --- a/docs/core_docs/docs/how_to/time_weighted_vectorstore.mdx +++ b/docs/core_docs/docs/how_to/time_weighted_vectorstore.mdx @@ -10,7 +10,7 @@ This guide assumes familiarity with the following concepts: ::: -This guide covers the [`TimeWeightedVectorStoreRetriever`](https://v02.api.js.langchain.com/classes/langchain_retrievers_time_weighted.TimeWeightedVectorStoreRetriever.html), +This guide covers the [`TimeWeightedVectorStoreRetriever`](https://v02.api.js.langchain.com/classes/langchain.retrievers_time_weighted.TimeWeightedVectorStoreRetriever.html), which uses a combination of semantic similarity and a time decay. The algorithm for scoring them is: diff --git a/docs/core_docs/docs/how_to/vectorstores.mdx b/docs/core_docs/docs/how_to/vectorstores.mdx index 95ac7f44eeea..7a1582c9e217 100644 --- a/docs/core_docs/docs/how_to/vectorstores.mdx +++ b/docs/core_docs/docs/how_to/vectorstores.mdx @@ -23,7 +23,7 @@ vectors, and then at query time to embed the unstructured query and retrieve the 'most similar' to the embedded query. A vector store takes care of storing embedded data and performing vector search for you. -This walkthrough uses a basic, unoptimized implementation called [`MemoryVectorStore`](https://v02.api.js.langchain.com/classes/langchain_vectorstores_memory.MemoryVectorStore.html) that stores embeddings in-memory and does an exact, linear search for the most similar embeddings. +This walkthrough uses a basic, unoptimized implementation called [`MemoryVectorStore`](https://v02.api.js.langchain.com/classes/langchain.vectorstores_memory.MemoryVectorStore.html) that stores embeddings in-memory and does an exact, linear search for the most similar embeddings. LangChain contains many built-in integrations - see [this section](/docs/how_to/vectorstores/#which-one-to-pick) for more, or the [full list of integrations](/docs/integrations/vectorstores/). ## Creating a new index diff --git a/docs/core_docs/docs/integrations/document_loaders/file_loaders/directory.ipynb b/docs/core_docs/docs/integrations/document_loaders/file_loaders/directory.ipynb index 3d19d94677d2..f28d9aefe1f2 100644 --- a/docs/core_docs/docs/integrations/document_loaders/file_loaders/directory.ipynb +++ b/docs/core_docs/docs/integrations/document_loaders/file_loaders/directory.ipynb @@ -26,7 +26,7 @@ "\n", "```\n", "\n", - "This notebook provides a quick overview for getting started with `DirectoryLoader` [document loaders](/docs/concepts/#document-loaders). For detailed documentation of all `DirectoryLoader` features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_document_loaders_fs_directory.DirectoryLoader.html).\n", + "This notebook provides a quick overview for getting started with `DirectoryLoader` [document loaders](/docs/concepts/#document-loaders). For detailed documentation of all `DirectoryLoader` features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.document_loaders_fs_directory.DirectoryLoader.html).\n", "\n", "This example goes over how to load data from folders with multiple files. The second argument is a map of file extensions to loader factories. Each file will be passed to the matching loader, and the resulting documents will be concatenated together.\n", "\n", @@ -45,7 +45,7 @@ "\n", "| Class | Package | Compatibility | Local | PY support | \n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [DirectoryLoader](https://api.js.langchain.com/classes/langchain_document_loaders_fs_directory.DirectoryLoader.html) | [langchain](https://api.js.langchain.com/modules/langchain_document_loaders_fs_directory.html) | Node-only | ✅ | ✅ |\n", + "| [DirectoryLoader](https://api.js.langchain.com/classes/langchain.document_loaders_fs_directory.DirectoryLoader.html) | [langchain](https://api.js.langchain.com/modules/langchain.document_loaders_fs_directory.html) | Node-only | ✅ | ✅ |\n", "\n", "## Setup\n", "\n", @@ -160,7 +160,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all DirectoryLoader features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_document_loaders_fs_directory.DirectoryLoader.html" + "For detailed documentation of all DirectoryLoader features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain.document_loaders_fs_directory.DirectoryLoader.html" ] }, { diff --git a/docs/core_docs/docs/integrations/document_loaders/file_loaders/text.ipynb b/docs/core_docs/docs/integrations/document_loaders/file_loaders/text.ipynb index bf6c6de8d823..aea4ff33148c 100644 --- a/docs/core_docs/docs/integrations/document_loaders/file_loaders/text.ipynb +++ b/docs/core_docs/docs/integrations/document_loaders/file_loaders/text.ipynb @@ -26,14 +26,14 @@ "\n", "```\n", "\n", - "This notebook provides a quick overview for getting started with `TextLoader` [document loaders](/docs/concepts/#document-loaders). For detailed documentation of all `TextLoader` features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_document_loaders_fs_text.TextLoader.html).\n", + "This notebook provides a quick overview for getting started with `TextLoader` [document loaders](/docs/concepts/#document-loaders). For detailed documentation of all `TextLoader` features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.document_loaders_fs_text.TextLoader.html).\n", "\n", "## Overview\n", "### Integration details\n", "\n", "| Class | Package | Compatibility | Local | PY support | \n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [TextLoader](https://api.js.langchain.com/classes/langchain_document_loaders_fs_text.TextLoader.html) | [langchain](https://api.js.langchain.com/modules/langchain_document_loaders_fs_text.html) | Node-only | ✅ | ❌ |\n", + "| [TextLoader](https://api.js.langchain.com/classes/langchain.document_loaders_fs_text.TextLoader.html) | [langchain](https://api.js.langchain.com/modules/langchain.document_loaders_fs_text.html) | Node-only | ✅ | ❌ |\n", "\n", "## Setup\n", "\n", @@ -132,7 +132,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all TextLoader features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_document_loaders_fs_text.TextLoader.html" + "For detailed documentation of all TextLoader features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain.document_loaders_fs_text.TextLoader.html" ] }, { diff --git a/docs/core_docs/docs/integrations/document_loaders/file_loaders/unstructured.ipynb b/docs/core_docs/docs/integrations/document_loaders/file_loaders/unstructured.ipynb index 6004fabb0f8a..c8dd6338a5e5 100644 --- a/docs/core_docs/docs/integrations/document_loaders/file_loaders/unstructured.ipynb +++ b/docs/core_docs/docs/integrations/document_loaders/file_loaders/unstructured.ipynb @@ -158,7 +158,7 @@ "source": [ "## Directories\n", "\n", - "You can also load all of the files in the directory using [`UnstructuredDirectoryLoader`](https://v02.api.js.langchain.com/classes/langchain_document_loaders_fs_unstructured.UnstructuredDirectoryLoader.html), which inherits from [`DirectoryLoader`](/docs/integrations/document_loaders/file_loaders/directory):\n" + "You can also load all of the files in the directory using [`UnstructuredDirectoryLoader`](https://v02.api.js.langchain.com/classes/langchain.document_loaders_fs_unstructured.UnstructuredDirectoryLoader.html), which inherits from [`DirectoryLoader`](/docs/integrations/document_loaders/file_loaders/directory):\n" ] }, { diff --git a/docs/core_docs/docs/integrations/document_loaders/web_loaders/sitemap.mdx b/docs/core_docs/docs/integrations/document_loaders/web_loaders/sitemap.mdx index b25f229919a1..6989a2101f7b 100644 --- a/docs/core_docs/docs/integrations/document_loaders/web_loaders/sitemap.mdx +++ b/docs/core_docs/docs/integrations/document_loaders/web_loaders/sitemap.mdx @@ -1,6 +1,6 @@ # Sitemap Loader -This notebook goes over how to use the [`SitemapLoader`](https://v02.api.js.langchain.com/classes/langchain_document_loaders_web_sitemap.SitemapLoader.html) class to load sitemaps into `Document`s. +This notebook goes over how to use the [`SitemapLoader`](https://v02.api.js.langchain.com/classes/langchain.document_loaders_web_sitemap.SitemapLoader.html) class to load sitemaps into `Document`s. ## Setup diff --git a/docs/core_docs/docs/integrations/retrievers/self_query/chroma.ipynb b/docs/core_docs/docs/integrations/retrievers/self_query/chroma.ipynb index 8fb4f47b7e5f..5ad60e41aac8 100644 --- a/docs/core_docs/docs/integrations/retrievers/self_query/chroma.ipynb +++ b/docs/core_docs/docs/integrations/retrievers/self_query/chroma.ipynb @@ -21,7 +21,7 @@ "source": [ "# Chroma\n", "\n", - "This guide will help you getting started with such a retriever backed by a [Chroma vector store](/docs/integrations/vectorstores/chroma). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html).\n", + "This guide will help you getting started with such a retriever backed by a [Chroma vector store](/docs/integrations/vectorstores/chroma). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html).\n", "\n", "## Overview\n", "\n", @@ -384,7 +384,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all Chroma self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html)." + "For detailed documentation of all Chroma self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html)." ] } ], diff --git a/docs/core_docs/docs/integrations/retrievers/self_query/hnswlib.ipynb b/docs/core_docs/docs/integrations/retrievers/self_query/hnswlib.ipynb index 0b0d16400815..f1b683c0187b 100644 --- a/docs/core_docs/docs/integrations/retrievers/self_query/hnswlib.ipynb +++ b/docs/core_docs/docs/integrations/retrievers/self_query/hnswlib.ipynb @@ -21,7 +21,7 @@ "source": [ "# HNSWLib\n", "\n", - "This guide will help you getting started with such a retriever backed by a [HNSWLib vector store](/docs/integrations/vectorstores/hnswlib). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html).\n", + "This guide will help you getting started with such a retriever backed by a [HNSWLib vector store](/docs/integrations/vectorstores/hnswlib). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html).\n", "\n", "## Overview\n", "\n", @@ -378,7 +378,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all HNSWLib self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html)." + "For detailed documentation of all HNSWLib self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html)." ] } ], diff --git a/docs/core_docs/docs/integrations/retrievers/self_query/memory.ipynb b/docs/core_docs/docs/integrations/retrievers/self_query/memory.ipynb index 60c4e5cc8dea..cde1d7578d5b 100644 --- a/docs/core_docs/docs/integrations/retrievers/self_query/memory.ipynb +++ b/docs/core_docs/docs/integrations/retrievers/self_query/memory.ipynb @@ -21,7 +21,7 @@ "source": [ "# In-memory\n", "\n", - "This guide will help you getting started with such a retriever backed by an [in-memory vector store](/docs/integrations/vectorstores/memory). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html).\n", + "This guide will help you getting started with such a retriever backed by an [in-memory vector store](/docs/integrations/vectorstores/memory). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html).\n", "\n", "## Overview\n", "\n", @@ -33,7 +33,7 @@ "\n", "| Backing vector store | Self-host | Cloud offering | Package | Py support |\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "[`MemoryVectorStore`](https://api.js.langchain.com/classes/langchain_vectorstores_memory.MemoryVectorStore.html) | ✅ | ❌ | [`langchain`](https://www.npmjs.com/package/langchain) | ❌ |\n", + "[`MemoryVectorStore`](https://api.js.langchain.com/classes/langchain.vectorstores_memory.MemoryVectorStore.html) | ✅ | ❌ | [`langchain`](https://www.npmjs.com/package/langchain) | ❌ |\n", "\n", "## Setup\n", "\n", @@ -378,7 +378,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all in-memory self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html)." + "For detailed documentation of all in-memory self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html)." ] } ], diff --git a/docs/core_docs/docs/integrations/retrievers/self_query/pinecone.ipynb b/docs/core_docs/docs/integrations/retrievers/self_query/pinecone.ipynb index 277a194fd034..ffb7219eea1f 100644 --- a/docs/core_docs/docs/integrations/retrievers/self_query/pinecone.ipynb +++ b/docs/core_docs/docs/integrations/retrievers/self_query/pinecone.ipynb @@ -21,7 +21,7 @@ "source": [ "# Pinecone\n", "\n", - "This guide will help you getting started with such a retriever backed by a [Pinecone vector store](/docs/integrations/vectorstores/pinecone). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html).\n", + "This guide will help you getting started with such a retriever backed by a [Pinecone vector store](/docs/integrations/vectorstores/pinecone). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html).\n", "\n", "## Overview\n", "\n", @@ -396,7 +396,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all Pinecone self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html)." + "For detailed documentation of all Pinecone self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html)." ] } ], diff --git a/docs/core_docs/docs/integrations/retrievers/self_query/qdrant.ipynb b/docs/core_docs/docs/integrations/retrievers/self_query/qdrant.ipynb index 154e9bd6150a..3236c436ebdb 100644 --- a/docs/core_docs/docs/integrations/retrievers/self_query/qdrant.ipynb +++ b/docs/core_docs/docs/integrations/retrievers/self_query/qdrant.ipynb @@ -21,7 +21,7 @@ "source": [ "# Qdrant\n", "\n", - "This guide will help you getting started with such a retriever backed by a [Qdrant vector store](/docs/integrations/vectorstores/qdrant). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html).\n", + "This guide will help you getting started with such a retriever backed by a [Qdrant vector store](/docs/integrations/vectorstores/qdrant). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html).\n", "\n", "## Overview\n", "\n", @@ -391,7 +391,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all Qdrant self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html)." + "For detailed documentation of all Qdrant self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html)." ] } ], diff --git a/docs/core_docs/docs/integrations/retrievers/self_query/supabase.ipynb b/docs/core_docs/docs/integrations/retrievers/self_query/supabase.ipynb index b249902a7c66..8e6fac3cc87b 100644 --- a/docs/core_docs/docs/integrations/retrievers/self_query/supabase.ipynb +++ b/docs/core_docs/docs/integrations/retrievers/self_query/supabase.ipynb @@ -21,7 +21,7 @@ "source": [ "# Supabase\n", "\n", - "This guide will help you getting started with such a retriever backed by a [Supabase vector store](/docs/integrations/vectorstores/supabase). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html).\n", + "This guide will help you getting started with such a retriever backed by a [Supabase vector store](/docs/integrations/vectorstores/supabase). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html).\n", "\n", "## Overview\n", "\n", @@ -388,7 +388,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all Supabase self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html)." + "For detailed documentation of all Supabase self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html)." ] } ], diff --git a/docs/core_docs/docs/integrations/retrievers/self_query/vectara.ipynb b/docs/core_docs/docs/integrations/retrievers/self_query/vectara.ipynb index 0d45945e7e5f..11635651857e 100644 --- a/docs/core_docs/docs/integrations/retrievers/self_query/vectara.ipynb +++ b/docs/core_docs/docs/integrations/retrievers/self_query/vectara.ipynb @@ -21,7 +21,7 @@ "source": [ "# Vectara\n", "\n", - "This guide will help you getting started with such a retriever backed by a [Vectara vector store](/docs/integrations/vectorstores/vectara). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html).\n", + "This guide will help you getting started with such a retriever backed by a [Vectara vector store](/docs/integrations/vectorstores/vectara). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html).\n", "\n", "## Overview\n", "\n", @@ -390,7 +390,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all Vectara self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html)." + "For detailed documentation of all Vectara self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html)." ] } ], diff --git a/docs/core_docs/docs/integrations/retrievers/self_query/weaviate.ipynb b/docs/core_docs/docs/integrations/retrievers/self_query/weaviate.ipynb index 09f3f4ff1d4e..9ccefb112d09 100644 --- a/docs/core_docs/docs/integrations/retrievers/self_query/weaviate.ipynb +++ b/docs/core_docs/docs/integrations/retrievers/self_query/weaviate.ipynb @@ -21,7 +21,7 @@ "source": [ "# Weaviate\n", "\n", - "This guide will help you getting started with such a retriever backed by a [Weaviate vector store](/docs/integrations/vectorstores/weaviate). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html).\n", + "This guide will help you getting started with such a retriever backed by a [Weaviate vector store](/docs/integrations/vectorstores/weaviate). For detailed documentation of all features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html).\n", "\n", "## Overview\n", "\n", @@ -399,7 +399,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all Weaviate self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_retrievers_self_query.SelfQueryRetriever.html)." + "For detailed documentation of all Weaviate self-query retriever features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.retrievers_self_query.SelfQueryRetriever.html)." ] } ], diff --git a/docs/core_docs/docs/integrations/stores/file_system.ipynb b/docs/core_docs/docs/integrations/stores/file_system.ipynb index f7da9b71cdee..c7c7bdd9ee77 100644 --- a/docs/core_docs/docs/integrations/stores/file_system.ipynb +++ b/docs/core_docs/docs/integrations/stores/file_system.ipynb @@ -30,7 +30,7 @@ "\n", "```\n", "\n", - "This will help you get started with [LocalFileStore](/docs/concepts/#key-value-stores). For detailed documentation of all LocalFileStore features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_storage_file_system.LocalFileStore.html).\n", + "This will help you get started with [LocalFileStore](/docs/concepts/#key-value-stores). For detailed documentation of all LocalFileStore features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.storage_file_system.LocalFileStore.html).\n", "\n", "## Overview\n", "\n", @@ -52,7 +52,7 @@ "\n", "| Class | Package | Local | [PY support](https://python.langchain.com/v0.2/docs/integrations/stores/file_system/) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: |\n", - "| [LocalFileStore](https://api.js.langchain.com/classes/langchain_storage_file_system.LocalFileStore.html) | [langchain](https://api.js.langchain.com/modules/langchain_storage_file_system.html) | ✅ | ✅ | ![NPM - Downloads](https://img.shields.io/npm/dm/langchain?style=flat-square&label=%20&) | ![NPM - Version](https://img.shields.io/npm/v/langchain?style=flat-square&label=%20&) |\n", + "| [LocalFileStore](https://api.js.langchain.com/classes/langchain.storage_file_system.LocalFileStore.html) | [langchain](https://api.js.langchain.com/modules/langchain.storage_file_system.html) | ✅ | ✅ | ![NPM - Downloads](https://img.shields.io/npm/dm/langchain?style=flat-square&label=%20&) | ![NPM - Version](https://img.shields.io/npm/v/langchain?style=flat-square&label=%20&) |\n", "\n", "## Setup\n", "\n", diff --git a/docs/core_docs/docs/integrations/vectorstores/googlevertexai.mdx b/docs/core_docs/docs/integrations/vectorstores/googlevertexai.mdx index afb9961bf64e..55c6e140bfc3 100644 --- a/docs/core_docs/docs/integrations/vectorstores/googlevertexai.mdx +++ b/docs/core_docs/docs/integrations/vectorstores/googlevertexai.mdx @@ -60,7 +60,7 @@ for Matching Engine: You will also need a document store. While an `InMemoryDocstore` is ok for initial testing, you will want to use something like a -[GoogleCloudStorageDocstore](https://v02.api.js.langchain.com/classes/langchain_stores_doc_gcs.GoogleCloudStorageDocstore.html) to store it more permanently. +[GoogleCloudStorageDocstore](https://api.js.langchain.com/classes/_langchain_community.stores_doc_gcs.GoogleCloudStorageDocstore.html) to store it more permanently. ```typescript import { MatchingEngine } from "@langchain/community/vectorstores/googlevertexai"; diff --git a/docs/core_docs/docs/integrations/vectorstores/memory.ipynb b/docs/core_docs/docs/integrations/vectorstores/memory.ipynb index 55c821e94060..8943d85715a9 100644 --- a/docs/core_docs/docs/integrations/vectorstores/memory.ipynb +++ b/docs/core_docs/docs/integrations/vectorstores/memory.ipynb @@ -25,7 +25,7 @@ "\n", "As it is intended for demos, it does not yet support ids or deletion.\n", "\n", - "This guide provides a quick overview for getting started with in-memory [`vector stores`](/docs/concepts/#vectorstores). For detailed documentation of all `MemoryVectorStore` features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_vectorstores_memory.MemoryVectorStore.html)." + "This guide provides a quick overview for getting started with in-memory [`vector stores`](/docs/concepts/#vectorstores). For detailed documentation of all `MemoryVectorStore` features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.vectorstores_memory.MemoryVectorStore.html)." ] }, { @@ -39,7 +39,7 @@ "\n", "| Class | Package | PY support | Package latest |\n", "| :--- | :--- | :---: | :---: |\n", - "| [`MemoryVectorStore`](https://api.js.langchain.com/classes/langchain_vectorstores_memory.MemoryVectorStore.html) | [`langchain`](https://www.npmjs.com/package/langchain) | ❌ | ![NPM - Version](https://img.shields.io/npm/v/langchain?style=flat-square&label=%20&) |" + "| [`MemoryVectorStore`](https://api.js.langchain.com/classes/langchain.vectorstores_memory.MemoryVectorStore.html) | [`langchain`](https://www.npmjs.com/package/langchain) | ❌ | ![NPM - Version](https://img.shields.io/npm/v/langchain?style=flat-square&label=%20&) |" ] }, { @@ -335,7 +335,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `MemoryVectorStore` features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain_vectorstores_memory.MemoryVectorStore.html)." + "For detailed documentation of all `MemoryVectorStore` features and configurations head to the [API reference](https://api.js.langchain.com/classes/langchain.vectorstores_memory.MemoryVectorStore.html)." ] } ], diff --git a/docs/core_docs/docs/tutorials/rag.ipynb b/docs/core_docs/docs/tutorials/rag.ipynb index 4eb778795079..ef5e147741ea 100644 --- a/docs/core_docs/docs/tutorials/rag.ipynb +++ b/docs/core_docs/docs/tutorials/rag.ipynb @@ -267,7 +267,7 @@ "## 1. Indexing: Load\n", "We need to first load the blog post contents. We can use [DocumentLoaders](/docs/concepts#document-loaders) for this, which are objects that load in data from a source and return a list of [Documents](https://v02.api.js.langchain.com/classes/langchain_core.documents.Document.html). A Document is an object with some pageContent (`string`) and metadata (`Record`).\n", "\n", - "In this case we’ll use the [CheerioWebBaseLoader](https://v02.api.js.langchain.com/classes/langchain_document_loaders_web_cheerio.CheerioWebBaseLoader.html), which uses cheerio to load HTML form web URLs and parse it to text. We can pass custom selectors to the constructor to only parse specific elements:" + "In this case we’ll use the [CheerioWebBaseLoader](https://v02.api.js.langchain.com/classes/langchain.document_loaders_web_cheerio.CheerioWebBaseLoader.html), which uses cheerio to load HTML form web URLs and parse it to text. We can pass custom selectors to the constructor to only parse specific elements:" ] }, { @@ -338,7 +338,7 @@ "### Go deeper\n", "`DocumentLoader`: Class that loads data from a source as list of Documents. - [Docs](/docs/concepts#document-loaders): Detailed documentation on how to use\n", "\n", - "`DocumentLoaders`. - [Integrations](/docs/integrations/document_loaders/) - [Interface](https://v02.api.js.langchain.com/classes/langchain_document_loaders_base.BaseDocumentLoader.html): API reference for the base interface." + "`DocumentLoaders`. - [Integrations](/docs/integrations/document_loaders/) - [Interface](https://v02.api.js.langchain.com/classes/langchain.document_loaders_base.BaseDocumentLoader.html): API reference for the base interface." ] }, { diff --git a/docs/core_docs/docs/tutorials/sql_qa.mdx b/docs/core_docs/docs/tutorials/sql_qa.mdx index b9dd313e233b..f362ffbcc4aa 100644 --- a/docs/core_docs/docs/tutorials/sql_qa.mdx +++ b/docs/core_docs/docs/tutorials/sql_qa.mdx @@ -69,7 +69,7 @@ Let's create a simple chain that takes a question, turns it into a SQL query, ex ### Convert question to SQL query -The first step in a SQL chain or agent is to take the user input and convert it to a SQL query. LangChain comes with a built-in chain for this: [`createSqlQueryChain`](https://v02.api.js.langchain.com/functions/langchain_chains_sql_db.createSqlQueryChain.html) +The first step in a SQL chain or agent is to take the user input and convert it to a SQL query. LangChain comes with a built-in chain for this: [`createSqlQueryChain`](https://v02.api.js.langchain.com/functions/langchain.chains_sql_db.createSqlQueryChain.html) import QuickstartChainExample from "@examples/use_cases/sql/quickstart_chain.ts"; @@ -94,7 +94,7 @@ This is the most dangerous part of creating a SQL chain. Consider carefully if i Minimize the database connection permissions as much as possible. Consider adding a human approval step to you chains before query execution (see below). -We can use the [`QuerySqlTool`](https://v02.api.js.langchain.com/classes/langchain_tools_sql.QuerySqlTool.html) to easily add query execution to our chain: +We can use the [`QuerySqlTool`](https://v02.api.js.langchain.com/classes/langchain.tools_sql.QuerySqlTool.html) to easily add query execution to our chain: import QuickstartExecuteExample from "@examples/use_cases/sql/quickstart_execute_sql.ts"; diff --git a/langchain/src/chains/load.ts b/langchain/src/chains/load.ts index 09a3ec5e959e..362f9e52ac26 100644 --- a/langchain/src/chains/load.ts +++ b/langchain/src/chains/load.ts @@ -30,7 +30,7 @@ const loadChainFromFile: FileLoader = async ( * const chain = await loadChain("/path/to/chain.json"); * ``` * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | load method}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | load method}. */ export const loadChain = async ( uri: string, diff --git a/langchain/src/chains/openai_functions/structured_output.ts b/langchain/src/chains/openai_functions/structured_output.ts index 520af1d0e7a8..02b2d487ee18 100644 --- a/langchain/src/chains/openai_functions/structured_output.ts +++ b/langchain/src/chains/openai_functions/structured_output.ts @@ -142,7 +142,7 @@ export class FunctionCallStructuredOutputParser< } /** - * @deprecated Use {@link https://v02.api.js.langchain.com/functions/langchain_chains_openai_functions.createStructuredOutputRunnable.html | createStructuredOutputRunnable} instead + * @deprecated Use {@link https://v02.api.js.langchain.com/functions/langchain.chains_openai_functions.createStructuredOutputRunnable.html | createStructuredOutputRunnable} instead * Create a chain that returns output matching a JSON Schema. * @param input Object that includes all LLMChainInput fields except "outputParser" * as well as an additional required "outputSchema" JSON Schema object. @@ -187,7 +187,7 @@ export function createStructuredOutputChain< }); } -/** @deprecated Use {@link https://v02.api.js.langchain.com/functions/langchain_chains_openai_functions.createStructuredOutputRunnable.html | createStructuredOutputRunnable} instead */ +/** @deprecated Use {@link https://v02.api.js.langchain.com/functions/langchain.chains_openai_functions.createStructuredOutputRunnable.html | createStructuredOutputRunnable} instead */ export function createStructuredOutputChainFromZod( zodSchema: T, input: Omit, "outputSchema"> diff --git a/langchain/src/chains/serde.ts b/langchain/src/chains/serde.ts index 0d4cae6e4e7b..911e35d01e2a 100644 --- a/langchain/src/chains/serde.ts +++ b/langchain/src/chains/serde.ts @@ -5,7 +5,7 @@ import { SerializedBasePromptTemplate } from "@langchain/core/prompts"; * Represents the serialized form of an LLMChain. It includes properties * such as `_type`, `llm`, and `prompt`. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedLLMChain = { _type: "llm_chain"; @@ -18,7 +18,7 @@ export type SerializedLLMChain = { * properties such as `_type`, `input_variables`, `output_variables`, and * `chains`. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedSequentialChain = { _type: "sequential_chain"; @@ -31,7 +31,7 @@ export type SerializedSequentialChain = { * Represents the serialized form of a SimpleSequentialChain. It includes * properties such as `_type` and `chains`. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedSimpleSequentialChain = { _type: "simple_sequential_chain"; @@ -42,7 +42,7 @@ export type SerializedSimpleSequentialChain = { * Represents the serialized form of a VectorDBQAChain. It includes * properties such as `_type`, `k`, and `combine_documents_chain`. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedVectorDBQAChain = { _type: "vector_db_qa"; @@ -55,7 +55,7 @@ export type SerializedVectorDBQAChain = { * such as `_type`, `api_request_chain`, `api_answer_chain`, and * `api_docs`. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedAPIChain = { _type: "api_chain"; @@ -68,7 +68,7 @@ export type SerializedAPIChain = { * Represents the serialized form of a StuffDocumentsChain. It includes * properties such as `_type` and `llm_chain`. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedStuffDocumentsChain = { _type: "stuff_documents_chain"; @@ -80,7 +80,7 @@ export type SerializedStuffDocumentsChain = { * properties such as `_type`, `k`, `combine_documents_chain`, and * `question_generator`. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedChatVectorDBQAChain = { _type: "chat-vector-db"; @@ -94,7 +94,7 @@ export type SerializedChatVectorDBQAChain = { * includes properties such as `_type`, `llm_chain`, and * `combine_document_chain`. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedMapReduceDocumentsChain = { _type: "map_reduce_documents_chain"; @@ -106,7 +106,7 @@ export type SerializedMapReduceDocumentsChain = { * Represents the serialized form of a RefineDocumentsChain. It includes * properties such as `_type`, `llm_chain`, and `refine_llm_chain`. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedRefineDocumentsChain = { _type: "refine_documents_chain"; @@ -118,7 +118,7 @@ export type SerializedRefineDocumentsChain = { * Represents the serialized form of an AnalyzeDocumentChain. It includes * properties such as `_type` and `combine_document_chain`. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedAnalyzeDocumentChain = { _type: "analyze_document_chain"; @@ -130,7 +130,7 @@ export type SerializedAnalyzeDocumentChain = { * includes properties such as `_type`, `critiqueRequest`, * `revisionRequest`, and `name`. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedConstitutionalPrinciple = { _type: "constitutional_principle"; @@ -158,7 +158,7 @@ export type SerializedConstitutionalChain = { * Represents the serialized form of a BaseChain. It can be one of the * above serialized chain types. * - * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain_load.load.html | serialization methods}. + * @deprecated Use newer {@link https://v02.api.js.langchain.com/functions/langchain.load.load.html | serialization methods}. */ export type SerializedBaseChain = | SerializedLLMChain