diff --git a/docs/docs/versions/migrating_chains/constitutional_chain.ipynb b/docs/docs/versions/migrating_chains/constitutional_chain.ipynb index 771145547cdf7..e5018aab6f430 100644 --- a/docs/docs/versions/migrating_chains/constitutional_chain.ipynb +++ b/docs/docs/versions/migrating_chains/constitutional_chain.ipynb @@ -1,20 +1,12 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "b57124cc-60a0-4c18-b7ce-3e483d1024a2", - "metadata": {}, - "source": [ - "---\n", - "title: Migrating from ConstitutionalChain\n", - "---" - ] - }, { "cell_type": "markdown", "id": "ce8457ed-c0b1-4a74-abbd-9d3d2211270f", "metadata": {}, "source": [ + "# Migrating from ConstitutionalChain\n", + "\n", "[ConstitutionalChain](https://api.python.langchain.com/en/latest/chains/langchain.chains.constitutional_ai.base.ConstitutionalChain.html) allowed for a LLM to critique and revise generations based on [principles](https://api.python.langchain.com/en/latest/chains/langchain.chains.constitutional_ai.models.ConstitutionalPrinciple.html), structured as combinations of critique and revision requests. For example, a principle might include a request to identify harmful content, and a request to rewrite the content.\n", "\n", "`Constitutional AI principles` are based on the [Constitutional AI: Harmlessness from AI Feedback](https://arxiv.org/pdf/2212.08073) paper.\n", diff --git a/docs/docs/versions/migrating_chains/conversation_chain.ipynb b/docs/docs/versions/migrating_chains/conversation_chain.ipynb index ba56524614a76..e2d692daa3ea1 100644 --- a/docs/docs/versions/migrating_chains/conversation_chain.ipynb +++ b/docs/docs/versions/migrating_chains/conversation_chain.ipynb @@ -1,21 +1,13 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "030d95bc-2f9d-492b-8245-b791b866936b", - "metadata": {}, - "source": [ - "---\n", - "title: Migrating from ConversationalChain\n", - "---" - ] - }, { "cell_type": "markdown", "id": "d20aeaad-b3ca-4a7d-b02d-3267503965af", "metadata": {}, "source": [ - "[`ConversationChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.conversation.base.ConversationChain.html) incorporates a memory of previous messages to sustain a stateful conversation.\n", + "# Migrating from ConversationalChain\n", + "\n", + "[`ConversationChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.conversation.base.ConversationChain.html) incorporated a memory of previous messages to sustain a stateful conversation.\n", "\n", "Some advantages of switching to the LCEL implementation are:\n", "\n", diff --git a/docs/docs/versions/migrating_chains/conversation_retrieval_chain.ipynb b/docs/docs/versions/migrating_chains/conversation_retrieval_chain.ipynb index 841eca7c44c85..85d4a3ac0e314 100644 --- a/docs/docs/versions/migrating_chains/conversation_retrieval_chain.ipynb +++ b/docs/docs/versions/migrating_chains/conversation_retrieval_chain.ipynb @@ -1,30 +1,29 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "9e279999-6bf0-4a48-9e06-539b916dc705", - "metadata": {}, - "source": [ - "---\n", - "title: Migrating from ConversationalRetrievalChain\n", - "---" - ] - }, { "cell_type": "markdown", "id": "292a3c83-44a9-4426-bbec-f1a778d00d93", "metadata": {}, "source": [ + "# Migrating from ConversationalRetrievalChain\n", + "\n", "The [`ConversationalRetrievalChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.conversational_retrieval.base.ConversationalRetrievalChain.html) was an all-in one way that combined retrieval-augmented generation with chat history, allowing you to \"chat with\" your documents.\n", "\n", - "Advantages of switching to the LCEL implementation are similar to the `RetrievalQA` section above:\n", + "Advantages of switching to the LCEL implementation are similar to the [`RetrievalQA` migration guide](./retrieval_qa.ipynb):\n", "\n", "- Clearer internals. The `ConversationalRetrievalChain` chain hides an entire question rephrasing step which dereferences the initial query against the chat history.\n", " - This means the class contains two sets of configurable prompts, LLMs, etc.\n", "- More easily return source documents.\n", "- Support for runnable methods like streaming and async operations.\n", "\n", - "Here are side-by-side implementations with custom prompts. We'll reuse the loaded documents and vector store from the previous section:" + "Here are equivalent implementations with custom prompts.\n", + "We'll use the following ingestion code to load a [blog post by Lilian Weng](https://lilianweng.github.io/posts/2023-06-23-agent/) on autonomous agents into a local vector store:\n", + "\n", + "## Shared setup\n", + "\n", + "For both versions, we'll need to load the data with the `WebBaseLoader` document loader, split it with `RecursiveCharacterTextSplitter`, and add it to an in-memory `FAISS` vector store.\n", + "\n", + "We will also instantiate a chat model to use." ] }, { diff --git a/docs/docs/versions/migrating_chains/index.ipynb b/docs/docs/versions/migrating_chains/index.ipynb new file mode 100644 index 0000000000000..9d9ddbba0cf0f --- /dev/null +++ b/docs/docs/versions/migrating_chains/index.ipynb @@ -0,0 +1,89 @@ +{ + "cells": [ + { + "cell_type": "raw", + "metadata": { + "vscode": { + "languageId": "raw" + } + }, + "source": [ + "---\n", + "sidebar_position: 1\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# How to migrate from v0.0 chains\n", + "\n", + "LangChain has evolved since its initial release, and many of the original \"Chain\" classes \n", + "have been deprecated in favor of the more flexible and powerful frameworks of LCEL and LangGraph. \n", + "\n", + "This guide will help you migrate your existing v0.0 chains to the new abstractions.\n", + "\n", + ":::info How deprecated implementations work\n", + "Even though many of these implementations are deprecated, they are **still supported** in the codebase. \n", + "However, they are not recommended for new development, and we recommend re-implementing them using the following guides!\n", + "\n", + "To see the planned removal version for each deprecated implementation, check their API reference.\n", + ":::\n", + "\n", + ":::info Prerequisites\n", + "\n", + "These guides assume some familiarity with the following concepts:\n", + "- [LangChain Expression Language](/docs/concepts#langchain-expression-language-lcel)\n", + "- [LangGraph](https://langchain-ai.github.io/langgraph/)\n", + ":::\n", + "\n", + "LangChain maintains a number of legacy abstractions. Many of these can be reimplemented via short combinations of LCEL and LangGraph primitives.\n", + "\n", + "### LCEL\n", + "[LCEL](/docs/concepts/#langchain-expression-language-lcel) is designed to streamline the process of building useful apps with LLMs and combining related components. It does this by providing:\n", + "\n", + "1. **A unified interface**: Every LCEL object implements the `Runnable` interface, which defines a common set of invocation methods (`invoke`, `batch`, `stream`, `ainvoke`, ...). This makes it possible to also automatically and consistently support useful operations like streaming of intermediate steps and batching, since every chain composed of LCEL objects is itself an LCEL object.\n", + "2. **Composition primitives**: LCEL provides a number of primitives that make it easy to compose chains, parallelize components, add fallbacks, dynamically configure chain internals, and more.\n", + "\n", + "### LangGraph\n", + "[LangGraph](https://langchain-ai.github.io/langgraph/), built on top of LCEL, allows for performant orchestrations of application components while maintaining concise and readable code. It includes built-in persistence, support for cycles, and prioritizes controllability.\n", + "If LCEL grows unwieldy for larger or more complex chains, they may benefit from a LangGraph implementation.\n", + "\n", + "### Advantages\n", + "Using these frameworks for existing v0.0 chains confers some advantages:\n", + "\n", + "- The resulting chains typically implement the full `Runnable` interface, including streaming and asynchronous support where appropriate;\n", + "- The chains may be more easily extended or modified;\n", + "- The parameters of the chain are typically surfaced for easier customization (e.g., prompts) over previous versions, which tended to be subclasses and had opaque parameters and internals.\n", + "- If using LangGraph, the chain supports built-in persistence, allowing for conversational experiences via a \"memory\" of the chat history.\n", + "- If using LangGraph, the steps of the chain can be streamed, allowing for greater control and customizability.\n", + "\n", + "\n", + "The below pages assist with migration from various specific chains to LCEL and LangGraph:\n", + "\n", + "- [LLMChain](./llm_chain.ipynb)\n", + "- [ConversationChain](./conversation_chain.ipynb)\n", + "- [RetrievalQA](./retrieval_qa.ipynb)\n", + "- [ConversationalRetrievalChain](./conversation_retrieval_chain.ipynb)\n", + "- [StuffDocumentsChain](./stuff_docs_chain.ipynb)\n", + "- [MapReduceDocumentsChain](./map_reduce_chain.ipynb)\n", + "- [MapRerankDocumentsChain](./map_rerank_docs_chain.ipynb)\n", + "- [RefineDocumentsChain](./refine_docs_chain.ipynb)\n", + "- [LLMRouterChain](./llm_router_chain.ipynb)\n", + "- [MultiPromptChain](./multi_prompt_chain.ipynb)\n", + "- [LLMMathChain](./llm_math_chain.ipynb)\n", + "- [ConstitutionalChain](./constitutional_chain.ipynb)\n", + "\n", + "Check out the [LCEL conceptual docs](/docs/concepts/#langchain-expression-language-lcel) and [LangGraph docs](https://langchain-ai.github.io/langgraph/) for more background information." + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/docs/versions/migrating_chains/index.mdx b/docs/docs/versions/migrating_chains/index.mdx deleted file mode 100644 index 69f6e24c8ef27..0000000000000 --- a/docs/docs/versions/migrating_chains/index.mdx +++ /dev/null @@ -1,51 +0,0 @@ ---- -sidebar_position: 1 ---- - -# How to migrate from v0.0 chains - -:::info Prerequisites - -This guide assumes familiarity with the following concepts: -- [LangChain Expression Language](/docs/concepts#langchain-expression-language-lcel) -- [LangGraph](https://langchain-ai.github.io/langgraph/) -::: - -LangChain maintains a number of legacy abstractions. Many of these can be reimplemented via short combinations of LCEL and LangGraph primitives. - -### LCEL -[LCEL](/docs/concepts/#langchain-expression-language-lcel) is designed to streamline the process of building useful apps with LLMs and combining related components. It does this by providing: - -1. **A unified interface**: Every LCEL object implements the `Runnable` interface, which defines a common set of invocation methods (`invoke`, `batch`, `stream`, `ainvoke`, ...). This makes it possible to also automatically and consistently support useful operations like streaming of intermediate steps and batching, since every chain composed of LCEL objects is itself an LCEL object. -2. **Composition primitives**: LCEL provides a number of primitives that make it easy to compose chains, parallelize components, add fallbacks, dynamically configure chain internals, and more. - -### LangGraph -[LangGraph](https://langchain-ai.github.io/langgraph/), built on top of LCEL, allows for performant orchestrations of application components while maintaining concise and readable code. It includes built-in persistence, support for cycles, and prioritizes controllability. -If LCEL grows unwieldy for larger or more complex chains, they may benefit from a LangGraph implementation. - -### Advantages -Using these frameworks for existing v0.0 chains confers some advantages: - -- The resulting chains typically implement the full `Runnable` interface, including streaming and asynchronous support where appropriate; -- The chains may be more easily extended or modified; -- The parameters of the chain are typically surfaced for easier customization (e.g., prompts) over previous versions, which tended to be subclasses and had opaque parameters and internals. -- If using LangGraph, the chain supports built-in persistence, allowing for conversational experiences via a "memory" of the chat history. -- If using LangGraph, the steps of the chain can be streamed, allowing for greater control and customizability. - - -The below pages assist with migration from various specific chains to LCEL and LangGraph: - -- [LLMChain](/docs/versions/migrating_chains/llm_chain) -- [ConversationChain](/docs/versions/migrating_chains/conversation_chain) -- [RetrievalQA](/docs/versions/migrating_chains/retrieval_qa) -- [ConversationalRetrievalChain](/docs/versions/migrating_chains/conversation_retrieval_chain) -- [StuffDocumentsChain](/docs/versions/migrating_chains/stuff_docs_chain) -- [MapReduceDocumentsChain](/docs/versions/migrating_chains/map_reduce_chain) -- [MapRerankDocumentsChain](/docs/versions/migrating_chains/map_rerank_docs_chain) -- [RefineDocumentsChain](/docs/versions/migrating_chains/refine_docs_chain) -- [LLMRouterChain](/docs/versions/migrating_chains/llm_router_chain) -- [MultiPromptChain](/docs/versions/migrating_chains/multi_prompt_chain) -- [LLMMathChain](/docs/versions/migrating_chains/llm_math_chain) -- [ConstitutionalChain](/docs/versions/migrating_chains/constitutional_chain) - -Check out the [LCEL conceptual docs](/docs/concepts/#langchain-expression-language-lcel) and [LangGraph docs](https://langchain-ai.github.io/langgraph/) for more background information. \ No newline at end of file diff --git a/docs/docs/versions/migrating_chains/llm_chain.ipynb b/docs/docs/versions/migrating_chains/llm_chain.ipynb index c288cadf0d1de..dbbb39fd4222d 100644 --- a/docs/docs/versions/migrating_chains/llm_chain.ipynb +++ b/docs/docs/versions/migrating_chains/llm_chain.ipynb @@ -1,20 +1,12 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "b57124cc-60a0-4c18-b7ce-3e483d1024a2", - "metadata": {}, - "source": [ - "---\n", - "title: Migrating from LLMChain\n", - "---" - ] - }, { "cell_type": "markdown", "id": "ce8457ed-c0b1-4a74-abbd-9d3d2211270f", "metadata": {}, "source": [ + "# Migrating from LLMChain\n", + "\n", "[`LLMChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.llm.LLMChain.html) combined a prompt template, LLM, and output parser into a class.\n", "\n", "Some advantages of switching to the LCEL implementation are:\n", @@ -36,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "id": "717c8673", "metadata": {}, "outputs": [], @@ -44,7 +36,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { @@ -59,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "id": "f91c9809-8ee7-4e38-881d-0ace4f6ea883", "metadata": {}, "outputs": [ @@ -70,7 +63,7 @@ " 'text': \"Why couldn't the bicycle stand up by itself?\\n\\nBecause it was two tired!\"}" ] }, - "execution_count": 2, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -84,9 +77,39 @@ " [(\"user\", \"Tell me a {adjective} joke\")],\n", ")\n", "\n", - "chain = LLMChain(llm=ChatOpenAI(), prompt=prompt)\n", + "legacy_chain = LLMChain(llm=ChatOpenAI(), prompt=prompt)\n", "\n", - "chain({\"adjective\": \"funny\"})" + "legacy_result = legacy_chain({\"adjective\": \"funny\"})\n", + "legacy_result" + ] + }, + { + "cell_type": "markdown", + "id": "9f89e97b", + "metadata": {}, + "source": [ + "Note that `LLMChain` by default returned a `dict` containing both the input and the output from `StrOutputParser`, so to extract the output, you need to access the `\"text\"` key." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "c7fa1618", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"Why couldn't the bicycle stand up by itself?\\n\\nBecause it was two tired!\"" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "legacy_result[\"text\"]" ] }, { @@ -137,7 +160,7 @@ "id": "3c0b0513-77b8-4371-a20e-3e487cec7e7f", "metadata": {}, "source": [ - "Note that `LLMChain` by default returns a `dict` containing both the input and the output. If this behavior is desired, we can replicate it using another LCEL primitive, [`RunnablePassthrough`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html):" + "If you'd like to mimic the `dict` packaging of input and output in `LLMChain`, you can use a [`RunnablePassthrough.assign`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html) like:" ] }, { @@ -197,7 +220,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/docs/docs/versions/migrating_chains/llm_math_chain.ipynb b/docs/docs/versions/migrating_chains/llm_math_chain.ipynb index 87f2511085e7c..0c1bcefd98b68 100644 --- a/docs/docs/versions/migrating_chains/llm_math_chain.ipynb +++ b/docs/docs/versions/migrating_chains/llm_math_chain.ipynb @@ -1,20 +1,12 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "b57124cc-60a0-4c18-b7ce-3e483d1024a2", - "metadata": {}, - "source": [ - "---\n", - "title: Migrating from LLMMathChain\n", - "---" - ] - }, { "cell_type": "markdown", "id": "ce8457ed-c0b1-4a74-abbd-9d3d2211270f", "metadata": {}, "source": [ + "# Migrating from LLMMathChain\n", + "\n", "[`LLMMathChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.llm_math.base.LLMMathChain.html) enabled the evaluation of mathematical expressions generated by a LLM. Instructions for generating the expressions were formatted into the prompt, and the expressions were parsed out of the string response before evaluation using the [numexpr](https://numexpr.readthedocs.io/en/latest/user_guide.html) library.\n", "\n", "This is more naturally achieved via [tool calling](/docs/concepts/#functiontool-calling). We can equip a chat model with a simple calculator tool leveraging `numexpr` and construct a simple chain around it using [LangGraph](https://langchain-ai.github.io/langgraph/). Some advantages of this approach include:\n", diff --git a/docs/docs/versions/migrating_chains/llm_router_chain.ipynb b/docs/docs/versions/migrating_chains/llm_router_chain.ipynb index 64561caa9651d..8247e1dbd7821 100644 --- a/docs/docs/versions/migrating_chains/llm_router_chain.ipynb +++ b/docs/docs/versions/migrating_chains/llm_router_chain.ipynb @@ -1,20 +1,12 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "575befea-4d98-4941-8e55-1581b169a674", - "metadata": {}, - "source": [ - "---\n", - "title: Migrating from LLMRouterChain\n", - "---" - ] - }, { "cell_type": "markdown", "id": "14625d35-efca-41cf-b203-be9f4c375700", "metadata": {}, "source": [ + "# Migrating from LLMRouterChain\n", + "\n", "The [`LLMRouterChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.router.llm_router.LLMRouterChain.html) routed an input query to one of multiple destinations-- that is, given an input query, it used a LLM to select from a list of destination chains, and passed its inputs to the selected chain.\n", "\n", "`LLMRouterChain` does not support common [chat model](/docs/concepts/#chat-models) features, such as message roles and [tool calling](/docs/concepts/#functiontool-calling). Under the hood, `LLMRouterChain` routes a query by instructing the LLM to generate JSON-formatted text, and parsing out the intended destination.\n", diff --git a/docs/docs/versions/migrating_chains/map_reduce_chain.ipynb b/docs/docs/versions/migrating_chains/map_reduce_chain.ipynb index 0520e67f8d7f5..845c2eb3137a5 100644 --- a/docs/docs/versions/migrating_chains/map_reduce_chain.ipynb +++ b/docs/docs/versions/migrating_chains/map_reduce_chain.ipynb @@ -1,20 +1,12 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "3270b34b-8958-425c-886a-ea4b9e26b475", - "metadata": {}, - "source": [ - "---\n", - "title: Migrating from MapReduceDocumentsChain\n", - "---" - ] - }, { "cell_type": "markdown", "id": "2c7bdc91-9b89-4e59-bc27-89508b024635", "metadata": {}, "source": [ + "# Migrating from MapReduceDocumentsChain\n", + "\n", "[MapReduceDocumentsChain](https://api.python.langchain.com/en/latest/chains/langchain.chains.combine_documents.map_reduce.MapReduceDocumentsChain.html) implements a map-reduce strategy over (potentially long) texts. The strategy is as follows:\n", "\n", "- Split a text into smaller documents;\n", @@ -37,11 +29,9 @@ "\n", "Let's first load a chat model:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "" ] }, { @@ -66,7 +56,7 @@ "source": [ "## Basic example (short documents)\n", "\n", - "Let's generate some simple documents for illustrative purposes." + "Let's use the following 3 documents for illustrative purposes." ] }, { @@ -206,7 +196,7 @@ "metadata": {}, "outputs": [], "source": [ - "pip install -qU langgraph" + "% pip install -qU langgraph" ] }, { diff --git a/docs/docs/versions/migrating_chains/map_rerank_docs_chain.ipynb b/docs/docs/versions/migrating_chains/map_rerank_docs_chain.ipynb index 43b3408b2ba49..2e0a36f16c9ca 100644 --- a/docs/docs/versions/migrating_chains/map_rerank_docs_chain.ipynb +++ b/docs/docs/versions/migrating_chains/map_rerank_docs_chain.ipynb @@ -5,9 +5,7 @@ "id": "9db5ad7a-857e-46ea-9d0c-ba3fbe62fc81", "metadata": {}, "source": [ - "---\n", - "title: Migrating from MapRerankDocumentsChain\n", - "---\n", + "# Migrating from MapRerankDocumentsChain\n", "\n", "[MapRerankDocumentsChain](https://api.python.langchain.com/en/latest/chains/langchain.chains.combine_documents.map_rerank.MapRerankDocumentsChain.html) implements a strategy for analyzing long texts. The strategy is as follows:\n", "\n", @@ -27,7 +25,7 @@ "source": [ "## Example\n", "\n", - "Let's go through an example where we analyze a set of documents. We first generate some simple documents for illustrative purposes:" + "Let's go through an example where we analyze a set of documents. Let's use the following 3 documents:" ] }, { diff --git a/docs/docs/versions/migrating_chains/multi_prompt_chain.ipynb b/docs/docs/versions/migrating_chains/multi_prompt_chain.ipynb index c1613464382f1..3bbfe7e729fc4 100644 --- a/docs/docs/versions/migrating_chains/multi_prompt_chain.ipynb +++ b/docs/docs/versions/migrating_chains/multi_prompt_chain.ipynb @@ -1,20 +1,12 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "575befea-4d98-4941-8e55-1581b169a674", - "metadata": {}, - "source": [ - "---\n", - "title: Migrating from MultiPromptChain\n", - "---" - ] - }, { "cell_type": "markdown", "id": "14625d35-efca-41cf-b203-be9f4c375700", "metadata": {}, "source": [ + "# Migrating from MultiPromptChain\n", + "\n", "The [`MultiPromptChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.router.multi_prompt.MultiPromptChain.html) routed an input query to one of multiple LLMChains-- that is, given an input query, it used a LLM to select from a list of prompts, formatted the query into the prompt, and generated a response.\n", "\n", "`MultiPromptChain` does not support common [chat model](/docs/concepts/#chat-models) features, such as message roles and [tool calling](/docs/concepts/#functiontool-calling).\n", @@ -321,7 +313,7 @@ "\n", "## Overview:\n", "\n", - "- Under the hood, `MultiPromptChain` routes the query by instructing the LLM to generate JSON-formatted text, and parses out the intended destination. It takes a registry of string prompt templates as input.\n", + "- Under the hood, `MultiPromptChain` routed the query by instructing the LLM to generate JSON-formatted text, and parses out the intended destination. It took a registry of string prompt templates as input.\n", "- The LangGraph implementation, implemented above via lower-level primitives, uses tool-calling to route to arbitrary chains. In this example, the chains include chat model templates and chat models." ] }, diff --git a/docs/docs/versions/migrating_chains/refine_docs_chain.ipynb b/docs/docs/versions/migrating_chains/refine_docs_chain.ipynb index 51fd1bbcc438b..3a6ee15654962 100644 --- a/docs/docs/versions/migrating_chains/refine_docs_chain.ipynb +++ b/docs/docs/versions/migrating_chains/refine_docs_chain.ipynb @@ -5,9 +5,7 @@ "id": "32eee276-7847-45d8-b303-dccc330c8a1a", "metadata": {}, "source": [ - "---\n", - "title: Migrating from RefineDocumentsChain\n", - "---\n", + "# Migrating from RefineDocumentsChain\n", "\n", "[RefineDocumentsChain](https://api.python.langchain.com/en/latest/chains/langchain.chains.combine_documents.refine.RefineDocumentsChain.html) implements a strategy for analyzing long texts. The strategy is as follows:\n", "\n", @@ -28,11 +26,9 @@ "\n", "Let's first load a chat model:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "" ] }, { diff --git a/docs/docs/versions/migrating_chains/retrieval_qa.ipynb b/docs/docs/versions/migrating_chains/retrieval_qa.ipynb index 2f1c45daa9027..6a0b84139c09c 100644 --- a/docs/docs/versions/migrating_chains/retrieval_qa.ipynb +++ b/docs/docs/versions/migrating_chains/retrieval_qa.ipynb @@ -1,21 +1,13 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "eddcd5c1-cbe9-4a7d-8903-7d1ab29f9094", - "metadata": {}, - "source": [ - "---\n", - "title: Migrating from RetrievalQA\n", - "---" - ] - }, { "cell_type": "markdown", "id": "b2d37868-dd01-4814-a76a-256f36cf66f7", "metadata": {}, "source": [ - "The [`RetrievalQA`](https://api.python.langchain.com/en/latest/chains/langchain.chains.retrieval_qa.base.RetrievalQA.html) chain performed natural-language question answering over a data source using retrieval-augmented generation.\n", + "# Migrating from RetrievalQA\n", + "\n", + "The [`RetrievalQA` chain](https://api.python.langchain.com/en/latest/chains/langchain.chains.retrieval_qa.base.RetrievalQA.html) performed natural-language question answering over a data source using retrieval-augmented generation.\n", "\n", "Some advantages of switching to the LCEL implementation are:\n", "\n", @@ -23,7 +15,13 @@ "- More easily return source documents.\n", "- Support for runnable methods like streaming and async operations.\n", "\n", - "Now let's look at them side-by-side. We'll use the same ingestion code to load a [blog post by Lilian Weng](https://lilianweng.github.io/posts/2023-06-23-agent/) on autonomous agents into a local vector store:" + "Now let's look at them side-by-side. We'll use the following ingestion code to load a [blog post by Lilian Weng](https://lilianweng.github.io/posts/2023-06-23-agent/) on autonomous agents into a local vector store:\n", + "\n", + "## Shared setup\n", + "\n", + "For both versions, we'll need to load the data with the `WebBaseLoader` document loader, split it with `RecursiveCharacterTextSplitter`, and add it to an in-memory `FAISS` vector store.\n", + "\n", + "We will also instantiate a chat model to use." ] }, { @@ -227,7 +225,7 @@ "\n", "## Next steps\n", "\n", - "Check out the [LCEL conceptual docs](/docs/concepts/#langchain-expression-language-lcel) for more background information." + "Check out the [LCEL conceptual docs](/docs/concepts/#langchain-expression-language-lcel) for more background information on the LangChain expression language." ] } ], diff --git a/docs/docs/versions/migrating_chains/stuff_docs_chain.ipynb b/docs/docs/versions/migrating_chains/stuff_docs_chain.ipynb index c7e255b884533..9596a1ddbcc25 100644 --- a/docs/docs/versions/migrating_chains/stuff_docs_chain.ipynb +++ b/docs/docs/versions/migrating_chains/stuff_docs_chain.ipynb @@ -5,9 +5,7 @@ "id": "ed78c53c-55ad-4ea2-9cc2-a39a1963c098", "metadata": {}, "source": [ - "---\n", - "title: Migrating from StuffDocumentsChain\n", - "---\n", + "# Migrating from StuffDocumentsChain\n", "\n", "[StuffDocumentsChain](https://api.python.langchain.com/en/latest/chains/langchain.chains.combine_documents.stuff.StuffDocumentsChain.html) combines documents by concatenating them into a single context window. It is a straightforward and effective strategy for combining documents for question-answering, summarization, and other purposes.\n", "\n", @@ -17,11 +15,9 @@ "\n", "Let's first load a chat model:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "" ] }, {