diff --git a/libs/langchain/langchain/chains/base.py b/libs/langchain/langchain/chains/base.py index 52ff280755273..94a9bdfd0aa83 100644 --- a/libs/langchain/langchain/chains/base.py +++ b/libs/langchain/langchain/chains/base.py @@ -7,7 +7,7 @@ from abc import ABC, abstractmethod from functools import partial from pathlib import Path -from typing import Any, Dict, List, Optional, Union +from typing import Any, Dict, List, Optional, Type, Union import yaml @@ -22,7 +22,13 @@ ) from langchain.load.dump import dumpd from langchain.load.serializable import Serializable -from langchain.pydantic_v1 import Field, root_validator, validator +from langchain.pydantic_v1 import ( + BaseModel, + Field, + create_model, + root_validator, + validator, +) from langchain.schema import RUN_KEY, BaseMemory, RunInfo from langchain.schema.runnable import Runnable, RunnableConfig @@ -56,6 +62,20 @@ class Chain(Serializable, Runnable[Dict[str, Any], Dict[str, Any]], ABC): chains and cannot return as rich of an output as `__call__`. """ + @property + def input_schema(self) -> Type[BaseModel]: + # This is correct, but pydantic typings/mypy don't think so. + return create_model( # type: ignore[call-overload] + "ChainInput", **{k: (Any, None) for k in self.input_keys} + ) + + @property + def output_schema(self) -> Type[BaseModel]: + # This is correct, but pydantic typings/mypy don't think so. + return create_model( # type: ignore[call-overload] + "ChainOutput", **{k: (Any, None) for k in self.output_keys} + ) + def invoke( self, input: Dict[str, Any], diff --git a/libs/langchain/langchain/chains/combine_documents/base.py b/libs/langchain/langchain/chains/combine_documents/base.py index 56b87ce2695ef..63cf836d46cbc 100644 --- a/libs/langchain/langchain/chains/combine_documents/base.py +++ b/libs/langchain/langchain/chains/combine_documents/base.py @@ -1,7 +1,7 @@ """Base interface for chains combining documents.""" from abc import ABC, abstractmethod -from typing import Any, Dict, List, Optional, Tuple +from typing import Any, Dict, List, Optional, Tuple, Type from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, @@ -9,7 +9,7 @@ ) from langchain.chains.base import Chain from langchain.docstore.document import Document -from langchain.pydantic_v1 import Field +from langchain.pydantic_v1 import BaseModel, Field, create_model from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter @@ -28,6 +28,20 @@ class BaseCombineDocumentsChain(Chain, ABC): input_key: str = "input_documents" #: :meta private: output_key: str = "output_text" #: :meta private: + @property + def input_schema(self) -> Type[BaseModel]: + return create_model( + "CombineDocumentsInput", + **{self.input_key: (List[Document], None)}, # type: ignore[call-overload] + ) + + @property + def output_schema(self) -> Type[BaseModel]: + return create_model( + "CombineDocumentsOutput", + **{self.output_key: (str, None)}, # type: ignore[call-overload] + ) + @property def input_keys(self) -> List[str]: """Expect input key. @@ -153,6 +167,17 @@ def output_keys(self) -> List[str]: """ return self.combine_docs_chain.output_keys + @property + def input_schema(self) -> Type[BaseModel]: + return create_model( + "AnalyzeDocumentChain", + **{self.input_key: (str, None)}, # type: ignore[call-overload] + ) + + @property + def output_schema(self) -> Type[BaseModel]: + return self.combine_docs_chain.output_schema + def _call( self, inputs: Dict[str, str], diff --git a/libs/langchain/langchain/chains/combine_documents/map_reduce.py b/libs/langchain/langchain/chains/combine_documents/map_reduce.py index 335ffd17a5b1d..f593f66db07ce 100644 --- a/libs/langchain/langchain/chains/combine_documents/map_reduce.py +++ b/libs/langchain/langchain/chains/combine_documents/map_reduce.py @@ -9,7 +9,7 @@ from langchain.chains.combine_documents.reduce import ReduceDocumentsChain from langchain.chains.llm import LLMChain from langchain.docstore.document import Document -from langchain.pydantic_v1 import Extra, root_validator +from langchain.pydantic_v1 import BaseModel, Extra, create_model, root_validator class MapReduceDocumentsChain(BaseCombineDocumentsChain): @@ -98,6 +98,19 @@ class MapReduceDocumentsChain(BaseCombineDocumentsChain): return_intermediate_steps: bool = False """Return the results of the map steps in the output.""" + @property + def output_schema(self) -> type[BaseModel]: + if self.return_intermediate_steps: + return create_model( + "MapReduceDocumentsOutput", + **{ + self.output_key: (str, None), + "intermediate_steps": (List[str], None), + }, # type: ignore[call-overload] + ) + + return super().output_schema + @property def output_keys(self) -> List[str]: """Expect input key. diff --git a/libs/langchain/langchain/chains/combine_documents/map_rerank.py b/libs/langchain/langchain/chains/combine_documents/map_rerank.py index ddc28a5232a55..4af56bc6caa26 100644 --- a/libs/langchain/langchain/chains/combine_documents/map_rerank.py +++ b/libs/langchain/langchain/chains/combine_documents/map_rerank.py @@ -9,7 +9,7 @@ from langchain.chains.llm import LLMChain from langchain.docstore.document import Document from langchain.output_parsers.regex import RegexParser -from langchain.pydantic_v1 import Extra, root_validator +from langchain.pydantic_v1 import BaseModel, Extra, create_model, root_validator class MapRerankDocumentsChain(BaseCombineDocumentsChain): @@ -77,6 +77,18 @@ class Config: extra = Extra.forbid arbitrary_types_allowed = True + @property + def output_schema(self) -> type[BaseModel]: + schema: Dict[str, Any] = { + self.output_key: (str, None), + } + if self.return_intermediate_steps: + schema["intermediate_steps"] = (List[str], None) + if self.metadata_keys: + schema.update({key: (Any, None) for key in self.metadata_keys}) + + return create_model("MapRerankOutput", **schema) + @property def output_keys(self) -> List[str]: """Expect input key. diff --git a/libs/langchain/langchain/chat_models/base.py b/libs/langchain/langchain/chat_models/base.py index 18278efd36f4f..7b8b474e2f089 100644 --- a/libs/langchain/langchain/chat_models/base.py +++ b/libs/langchain/langchain/chat_models/base.py @@ -11,6 +11,7 @@ List, Optional, Sequence, + Union, cast, ) @@ -37,9 +38,14 @@ from langchain.schema.language_model import BaseLanguageModel, LanguageModelInput from langchain.schema.messages import ( AIMessage, + AIMessageChunk, BaseMessage, BaseMessageChunk, + ChatMessageChunk, + FunctionMessageChunk, HumanMessage, + HumanMessageChunk, + SystemMessageChunk, ) from langchain.schema.output import ChatGenerationChunk from langchain.schema.runnable import RunnableConfig @@ -107,6 +113,17 @@ class Config: # --- Runnable methods --- + @property + def OutputType(self) -> Any: + """Get the input type for this runnable.""" + return Union[ + HumanMessageChunk, + AIMessageChunk, + ChatMessageChunk, + FunctionMessageChunk, + SystemMessageChunk, + ] + def _convert_input(self, input: LanguageModelInput) -> PromptValue: if isinstance(input, PromptValue): return input diff --git a/libs/langchain/langchain/chat_models/litellm.py b/libs/langchain/langchain/chat_models/litellm.py index 275b8cba790e7..1a35f1d47d934 100644 --- a/libs/langchain/langchain/chat_models/litellm.py +++ b/libs/langchain/langchain/chat_models/litellm.py @@ -38,6 +38,8 @@ BaseMessageChunk, ChatMessage, ChatMessageChunk, + FunctionMessage, + FunctionMessageChunk, HumanMessage, HumanMessageChunk, SystemMessage, @@ -53,39 +55,6 @@ class ChatLiteLLMException(Exception): """Error with the `LiteLLM I/O` library""" -def _truncate_at_stop_tokens( - text: str, - stop: Optional[List[str]], -) -> str: - """Truncates text at the earliest stop token found.""" - if stop is None: - return text - - for stop_token in stop: - stop_token_idx = text.find(stop_token) - if stop_token_idx != -1: - text = text[:stop_token_idx] - return text - - -class FunctionMessage(BaseMessage): - """Message for passing the result of executing a function back to a model.""" - - name: str - """The name of the function that was executed.""" - - @property - def type(self) -> str: - """Type of the message, used for serialization.""" - return "function" - - -class FunctionMessageChunk(FunctionMessage, BaseMessageChunk): - """Message Chunk for passing the result of executing a function back to a model.""" - - pass - - def _create_retry_decorator( llm: ChatLiteLLM, run_manager: Optional[ diff --git a/libs/langchain/langchain/llms/base.py b/libs/langchain/langchain/llms/base.py index bfaa85fdebfd7..e7d165d43928c 100644 --- a/libs/langchain/langchain/llms/base.py +++ b/libs/langchain/langchain/llms/base.py @@ -199,6 +199,11 @@ def set_verbose(cls, verbose: Optional[bool]) -> bool: # --- Runnable methods --- + @property + def OutputType(self) -> Type[str]: + """Get the input type for this runnable.""" + return str + def _convert_input(self, input: LanguageModelInput) -> PromptValue: if isinstance(input, PromptValue): return input diff --git a/libs/langchain/langchain/prompts/chat.py b/libs/langchain/langchain/prompts/chat.py index 6e044473d0ed9..bffb0aaa7b8f1 100644 --- a/libs/langchain/langchain/prompts/chat.py +++ b/libs/langchain/langchain/prompts/chat.py @@ -28,6 +28,7 @@ ) from langchain.schema.messages import ( AIMessage, + AnyMessage, BaseMessage, ChatMessage, HumanMessage, @@ -280,7 +281,7 @@ class ChatPromptValue(PromptValue): A type of a prompt value that is built from messages. """ - messages: List[BaseMessage] + messages: Sequence[BaseMessage] """List of messages.""" def to_string(self) -> str: @@ -289,7 +290,14 @@ def to_string(self) -> str: def to_messages(self) -> List[BaseMessage]: """Return prompt as a list of messages.""" - return self.messages + return list(self.messages) + + +class ChatPromptValueConcrete(ChatPromptValue): + """Chat prompt value which explicitly lists out the message types it accepts. + For use in external schemas.""" + + messages: Sequence[AnyMessage] class BaseChatPromptTemplate(BasePromptTemplate, ABC): diff --git a/libs/langchain/langchain/schema/language_model.py b/libs/langchain/langchain/schema/language_model.py index 8623233807f44..16e8edbc9cd36 100644 --- a/libs/langchain/langchain/schema/language_model.py +++ b/libs/langchain/langchain/schema/language_model.py @@ -13,8 +13,10 @@ Union, ) +from typing_extensions import TypeAlias + from langchain.load.serializable import Serializable -from langchain.schema.messages import BaseMessage, get_buffer_string +from langchain.schema.messages import AnyMessage, BaseMessage, get_buffer_string from langchain.schema.output import LLMResult from langchain.schema.prompt import PromptValue from langchain.schema.runnable import Runnable @@ -70,6 +72,21 @@ class BaseLanguageModel( Each of these has an equivalent asynchronous method. """ + @property + def InputType(self) -> TypeAlias: + """Get the input type for this runnable.""" + from langchain.prompts.base import StringPromptValue + from langchain.prompts.chat import ChatPromptValueConcrete + + # This is a version of LanguageModelInput which replaces the abstract + # base class BaseMessage with a union of its subclasses, which makes + # for a much better schema. + return Union[ + str, + Union[StringPromptValue, ChatPromptValueConcrete], + List[AnyMessage], + ] + @abstractmethod def generate_prompt( self, diff --git a/libs/langchain/langchain/schema/messages.py b/libs/langchain/langchain/schema/messages.py index ee0039f0e939c..003d133b9d543 100644 --- a/libs/langchain/langchain/schema/messages.py +++ b/libs/langchain/langchain/schema/messages.py @@ -1,10 +1,11 @@ from __future__ import annotations -from abc import abstractmethod -from typing import TYPE_CHECKING, Any, Dict, List, Sequence +from typing import TYPE_CHECKING, Any, Dict, List, Sequence, Union + +from typing_extensions import Literal from langchain.load.serializable import Serializable -from langchain.pydantic_v1 import Field +from langchain.pydantic_v1 import Extra, Field if TYPE_CHECKING: from langchain.prompts.chat import ChatPromptTemplate @@ -69,10 +70,10 @@ class BaseMessage(Serializable): additional_kwargs: dict = Field(default_factory=dict) """Any additional information.""" - @property - @abstractmethod - def type(self) -> str: - """Type of the Message, used for serialization.""" + type: str + + class Config: + extra = Extra.allow @classmethod def is_lc_serializable(cls) -> bool: @@ -147,10 +148,10 @@ class HumanMessage(BaseMessage): conversation. """ - @property - def type(self) -> str: - """Type of the message, used for serialization.""" - return "human" + type: Literal["human"] = "human" + + +HumanMessage.update_forward_refs() class HumanMessageChunk(HumanMessage, BaseMessageChunk): @@ -167,10 +168,10 @@ class AIMessage(BaseMessage): conversation. """ - @property - def type(self) -> str: - """Type of the message, used for serialization.""" - return "ai" + type: Literal["ai"] = "ai" + + +AIMessage.update_forward_refs() class AIMessageChunk(AIMessage, BaseMessageChunk): @@ -199,10 +200,10 @@ class SystemMessage(BaseMessage): of input messages. """ - @property - def type(self) -> str: - """Type of the message, used for serialization.""" - return "system" + type: Literal["system"] = "system" + + +SystemMessage.update_forward_refs() class SystemMessageChunk(SystemMessage, BaseMessageChunk): @@ -217,10 +218,10 @@ class FunctionMessage(BaseMessage): name: str """The name of the function that was executed.""" - @property - def type(self) -> str: - """Type of the message, used for serialization.""" - return "function" + type: Literal["function"] = "function" + + +FunctionMessage.update_forward_refs() class FunctionMessageChunk(FunctionMessage, BaseMessageChunk): @@ -250,10 +251,10 @@ class ChatMessage(BaseMessage): role: str """The speaker / role of the Message.""" - @property - def type(self) -> str: - """Type of the message, used for serialization.""" - return "chat" + type: Literal["chat"] = "chat" + + +ChatMessage.update_forward_refs() class ChatMessageChunk(ChatMessage, BaseMessageChunk): @@ -277,6 +278,9 @@ def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore return super().__add__(other) +AnyMessage = Union[AIMessage, HumanMessage, ChatMessage, SystemMessage, FunctionMessage] + + def _message_to_dict(message: BaseMessage) -> dict: return {"type": message.type, "data": message.dict()} diff --git a/libs/langchain/langchain/schema/output_parser.py b/libs/langchain/langchain/schema/output_parser.py index c0680cad1731b..46a8d9def0339 100644 --- a/libs/langchain/langchain/schema/output_parser.py +++ b/libs/langchain/langchain/schema/output_parser.py @@ -14,8 +14,10 @@ Union, ) +from typing_extensions import get_args + from langchain.load.serializable import Serializable -from langchain.schema.messages import BaseMessage +from langchain.schema.messages import AnyMessage, BaseMessage from langchain.schema.output import ChatGeneration, Generation from langchain.schema.prompt import PromptValue from langchain.schema.runnable import Runnable, RunnableConfig @@ -58,6 +60,16 @@ class BaseGenerationOutputParser( ): """Base class to parse the output of an LLM call.""" + @property + def InputType(self) -> Any: + return Union[str, AnyMessage] + + @property + def OutputType(self) -> type[T]: + # even though mypy complains this isn't valid, + # it is good enough for pydantic to build the schema from + return T # type: ignore[misc] + def invoke( self, input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None ) -> T: @@ -129,6 +141,22 @@ def _type(self) -> str: return "boolean_output_parser" """ # noqa: E501 + @property + def InputType(self) -> Any: + return Union[str, AnyMessage] + + @property + def OutputType(self) -> type[T]: + for cls in self.__class__.__orig_bases__: # type: ignore[attr-defined] + type_args = get_args(cls) + if type_args and len(type_args) == 1: + return type_args[0] + + raise TypeError( + f"Runnable {self.__class__.__name__} doesn't have an inferable OutputType. " + "Override the OutputType property to specify the output type." + ) + def invoke( self, input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None ) -> T: diff --git a/libs/langchain/langchain/schema/prompt_template.py b/libs/langchain/langchain/schema/prompt_template.py index 42676827e43bd..ab790753aaffe 100644 --- a/libs/langchain/langchain/schema/prompt_template.py +++ b/libs/langchain/langchain/schema/prompt_template.py @@ -8,7 +8,7 @@ import yaml from langchain.load.serializable import Serializable -from langchain.pydantic_v1 import Field, root_validator +from langchain.pydantic_v1 import BaseModel, Field, create_model, root_validator from langchain.schema.document import Document from langchain.schema.output_parser import BaseOutputParser from langchain.schema.prompt import PromptValue @@ -36,6 +36,20 @@ class Config: arbitrary_types_allowed = True + @property + def OutputType(self) -> Any: + from langchain.prompts.base import StringPromptValue + from langchain.prompts.chat import ChatPromptValueConcrete + + return Union[StringPromptValue, ChatPromptValueConcrete] + + @property + def input_schema(self) -> type[BaseModel]: + # This is correct, but pydantic typings/mypy don't think so. + return create_model( # type: ignore[call-overload] + "PromptInput", **{k: (Any, None) for k in self.input_variables} + ) + def invoke(self, input: Dict, config: RunnableConfig | None = None) -> PromptValue: return self._call_with_config( lambda inner_input: self.format_prompt( diff --git a/libs/langchain/langchain/schema/runnable/base.py b/libs/langchain/langchain/schema/runnable/base.py index 45872a18c6900..94f0227ebcbd1 100644 --- a/libs/langchain/langchain/schema/runnable/base.py +++ b/libs/langchain/langchain/schema/runnable/base.py @@ -7,6 +7,7 @@ from concurrent.futures import FIRST_COMPLETED, wait from functools import partial from itertools import tee +from operator import itemgetter from typing import ( TYPE_CHECKING, Any, @@ -27,6 +28,8 @@ cast, ) +from typing_extensions import get_args + if TYPE_CHECKING: from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, @@ -37,7 +40,7 @@ from langchain.load.dump import dumpd from langchain.load.serializable import Serializable -from langchain.pydantic_v1 import Field +from langchain.pydantic_v1 import BaseModel, Field, create_model from langchain.schema.runnable.config import ( RunnableConfig, acall_func_with_variable_args, @@ -55,6 +58,7 @@ accepts_config, accepts_run_manager, gather_with_concurrency, + get_function_first_arg_dict_keys, ) from langchain.utils.aiter import atee, py_anext from langchain.utils.iter import safetee @@ -66,6 +70,52 @@ class Runnable(Generic[Input, Output], ABC): """A Runnable is a unit of work that can be invoked, batched, streamed, or transformed.""" + @property + def InputType(self) -> Type[Input]: + for cls in self.__class__.__orig_bases__: # type: ignore[attr-defined] + type_args = get_args(cls) + if type_args and len(type_args) == 2: + return type_args[0] + + raise TypeError( + f"Runnable {self.__class__.__name__} doesn't have an inferable InputType. " + "Override the InputType property to specify the input type." + ) + + @property + def OutputType(self) -> Type[Output]: + for cls in self.__class__.__orig_bases__: # type: ignore[attr-defined] + type_args = get_args(cls) + if type_args and len(type_args) == 2: + return type_args[1] + + raise TypeError( + f"Runnable {self.__class__.__name__} doesn't have an inferable OutputType. " + "Override the OutputType property to specify the output type." + ) + + @property + def input_schema(self) -> Type[BaseModel]: + root_type = self.InputType + + if inspect.isclass(root_type) and issubclass(root_type, BaseModel): + return root_type + + return create_model( + self.__class__.__name__ + "Input", __root__=(root_type, None) + ) + + @property + def output_schema(self) -> Type[BaseModel]: + root_type = self.OutputType + + if inspect.isclass(root_type) and issubclass(root_type, BaseModel): + return root_type + + return create_model( + self.__class__.__name__ + "Output", __root__=(root_type, None) + ) + def __or__( self, other: Union[ @@ -849,6 +899,20 @@ def get_lc_namespace(cls) -> List[str]: """The namespace of a RunnableBranch is the namespace of its default branch.""" return cls.__module__.split(".")[:-1] + @property + def input_schema(self) -> type[BaseModel]: + runnables = ( + [self.default] + + [r for _, r in self.branches] + + [r for r, _ in self.branches] + ) + + for runnable in runnables: + if runnable.input_schema.schema().get("type") is not None: + return runnable.input_schema + + return super().input_schema + def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: """First evaluates the condition, then delegate to true or false branch.""" config = ensure_config(config) @@ -953,6 +1017,22 @@ class RunnableWithFallbacks(Serializable, Runnable[Input, Output]): class Config: arbitrary_types_allowed = True + @property + def InputType(self) -> Type[Input]: + return self.runnable.InputType + + @property + def OutputType(self) -> Type[Output]: + return self.runnable.OutputType + + @property + def input_schema(self) -> Type[BaseModel]: + return self.runnable.input_schema + + @property + def output_schema(self) -> Type[BaseModel]: + return self.runnable.output_schema + @classmethod def is_lc_serializable(cls) -> bool: return True @@ -1202,6 +1282,22 @@ def get_lc_namespace(cls) -> List[str]: class Config: arbitrary_types_allowed = True + @property + def InputType(self) -> Type[Input]: + return self.first.InputType + + @property + def OutputType(self) -> Type[Output]: + return self.last.OutputType + + @property + def input_schema(self) -> Type[BaseModel]: + return self.first.input_schema + + @property + def output_schema(self) -> Type[BaseModel]: + return self.last.output_schema + def __or__( self, other: Union[ @@ -1692,6 +1788,37 @@ def get_lc_namespace(cls) -> List[str]: class Config: arbitrary_types_allowed = True + @property + def InputType(self) -> Any: + for step in self.steps.values(): + if step.InputType: + return step.InputType + + return Any + + @property + def input_schema(self) -> type[BaseModel]: + if all(not s.input_schema.__custom_root_type__ for s in self.steps.values()): + # This is correct, but pydantic typings/mypy don't think so. + return create_model( # type: ignore[call-overload] + "RunnableMapInput", + **{ + k: (v.type_, v.default) + for step in self.steps.values() + for k, v in step.input_schema.__fields__.items() + }, + ) + + return super().input_schema + + @property + def output_schema(self) -> type[BaseModel]: + # This is correct, but pydantic typings/mypy don't think so. + return create_model( # type: ignore[call-overload] + "RunnableMapOutput", + **{k: (v.OutputType, None) for k, v in self.steps.items()}, + ) + def invoke( self, input: Input, config: Optional[RunnableConfig] = None ) -> Dict[str, Any]: @@ -1942,6 +2069,59 @@ def __init__( f"Instead got an unsupported type: {type(func)}" ) + @property + def InputType(self) -> Any: + func = getattr(self, "func", None) or getattr(self, "afunc") + try: + params = inspect.signature(func).parameters + first_param = next(iter(params.values()), None) + if first_param and first_param.annotation != inspect.Parameter.empty: + return first_param.annotation + else: + return Any + except ValueError: + return Any + + @property + def input_schema(self) -> Type[BaseModel]: + func = getattr(self, "func", None) or getattr(self, "afunc") + + if isinstance(func, itemgetter): + # This is terrible, but afaict it's not possible to access _items + # on itemgetter objects, so we have to parse the repr + items = str(func).replace("operator.itemgetter(", "")[:-1].split(", ") + if all( + item[0] == "'" and item[-1] == "'" and len(item) > 2 for item in items + ): + # It's a dict, lol + return create_model( + "RunnableLambdaInput", + **{item[1:-1]: (Any, None) for item in items}, # type: ignore + ) + else: + return create_model("RunnableLambdaInput", __root__=(List[Any], None)) + + if dict_keys := get_function_first_arg_dict_keys(func): + return create_model( + "RunnableLambdaInput", + **{key: (Any, None) for key in dict_keys}, # type: ignore + ) + + return super().input_schema + + @property + def OutputType(self) -> Any: + func = getattr(self, "func", None) or getattr(self, "afunc") + try: + sig = inspect.signature(func) + return ( + sig.return_annotation + if sig.return_annotation != inspect.Signature.empty + else Any + ) + except ValueError: + return Any + def __eq__(self, other: Any) -> bool: if isinstance(other, RunnableLambda): if hasattr(self, "func") and hasattr(other, "func"): @@ -2068,6 +2248,34 @@ class RunnableEach(Serializable, Runnable[List[Input], List[Output]]): class Config: arbitrary_types_allowed = True + @property + def InputType(self) -> Any: + return List[self.bound.InputType] # type: ignore[name-defined] + + @property + def input_schema(self) -> type[BaseModel]: + return create_model( + "RunnableEachInput", + __root__=( + List[self.bound.input_schema], # type: ignore[name-defined] + None, + ), + ) + + @property + def OutputType(self) -> type[List[Output]]: + return List[self.bound.OutputType] # type: ignore[name-defined] + + @property + def output_schema(self) -> type[BaseModel]: + return create_model( + "RunnableEachOutput", + __root__=( + List[self.bound.output_schema], # type: ignore[name-defined] + None, + ), + ) + @classmethod def is_lc_serializable(cls) -> bool: return True @@ -2124,6 +2332,22 @@ class RunnableBinding(Serializable, Runnable[Input, Output]): class Config: arbitrary_types_allowed = True + @property + def InputType(self) -> type[Input]: + return self.bound.InputType + + @property + def OutputType(self) -> type[Output]: + return self.bound.OutputType + + @property + def input_schema(self) -> Type[BaseModel]: + return self.bound.input_schema + + @property + def output_schema(self) -> Type[BaseModel]: + return self.bound.output_schema + @classmethod def is_lc_serializable(cls) -> bool: return True diff --git a/libs/langchain/langchain/schema/runnable/passthrough.py b/libs/langchain/langchain/schema/runnable/passthrough.py index d1ad275e4ef06..5bcead7d95d1d 100644 --- a/libs/langchain/langchain/schema/runnable/passthrough.py +++ b/libs/langchain/langchain/schema/runnable/passthrough.py @@ -1,6 +1,6 @@ from __future__ import annotations -from typing import Any, AsyncIterator, Iterator, List, Optional +from typing import Any, AsyncIterator, Iterator, List, Optional, Type from langchain.load.serializable import Serializable from langchain.schema.runnable.base import Input, Runnable @@ -20,6 +20,8 @@ class RunnablePassthrough(Serializable, Runnable[Input, Input]): A runnable that passes through the input. """ + input_type: Optional[Type[Input]] = None + @classmethod def is_lc_serializable(cls) -> bool: return True @@ -28,6 +30,14 @@ def is_lc_serializable(cls) -> bool: def get_lc_namespace(cls) -> List[str]: return cls.__module__.split(".")[:-1] + @property + def InputType(self) -> Any: + return self.input_type or Any + + @property + def OutputType(self) -> Any: + return self.input_type or Any + def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Input: return self._call_with_config(identity, input, config) diff --git a/libs/langchain/langchain/schema/runnable/router.py b/libs/langchain/langchain/schema/runnable/router.py index 799e5f22d6797..6a43e61d69da3 100644 --- a/libs/langchain/langchain/schema/runnable/router.py +++ b/libs/langchain/langchain/schema/runnable/router.py @@ -4,16 +4,16 @@ Any, AsyncIterator, Callable, - Generic, Iterator, List, Mapping, Optional, - TypedDict, Union, cast, ) +from typing_extensions import TypedDict + from langchain.load.serializable import Serializable from langchain.schema.runnable.base import ( Input, @@ -43,21 +43,17 @@ class RouterInput(TypedDict): input: Any -class RouterRunnable( - Serializable, Generic[Input, Output], Runnable[RouterInput, Output] -): +class RouterRunnable(Serializable, Runnable[RouterInput, Output]): """ A runnable that routes to a set of runnables based on Input['key']. Returns the output of the selected runnable. """ - runnables: Mapping[str, Runnable[Input, Output]] + runnables: Mapping[str, Runnable[Any, Output]] def __init__( self, - runnables: Mapping[ - str, Union[Runnable[Input, Output], Callable[[Input], Output]] - ], + runnables: Mapping[str, Union[Runnable[Any, Output], Callable[[Any], Output]]], ) -> None: super().__init__( runnables={key: coerce_to_runnable(r) for key, r in runnables.items()} diff --git a/libs/langchain/langchain/schema/runnable/utils.py b/libs/langchain/langchain/schema/runnable/utils.py index 43d9b325fd976..8193bd69e3eb5 100644 --- a/libs/langchain/langchain/schema/runnable/utils.py +++ b/libs/langchain/langchain/schema/runnable/utils.py @@ -1,8 +1,11 @@ from __future__ import annotations +import ast import asyncio +import inspect +import textwrap from inspect import signature -from typing import Any, Callable, Coroutine, TypeVar, Union +from typing import Any, Callable, Coroutine, List, Optional, Set, TypeVar, Union Input = TypeVar("Input") # Output type should implement __concat__, as eg str, list, dict do @@ -35,3 +38,61 @@ def accepts_config(callable: Callable[..., Any]) -> bool: return signature(callable).parameters.get("config") is not None except ValueError: return False + + +class IsLocalDict(ast.NodeVisitor): + def __init__(self, name: str, keys: Set[str]) -> None: + self.name = name + self.keys = keys + + def visit_Subscript(self, node: ast.Subscript) -> Any: + if ( + isinstance(node.ctx, ast.Load) + and isinstance(node.value, ast.Name) + and node.value.id == self.name + and isinstance(node.slice, ast.Constant) + and isinstance(node.slice.value, str) + ): + # we've found a subscript access on the name we're looking for + self.keys.add(node.slice.value) + + def visit_Call(self, node: ast.Call) -> Any: + if ( + isinstance(node.func, ast.Attribute) + and isinstance(node.func.value, ast.Name) + and node.func.value.id == self.name + and node.func.attr == "get" + and len(node.args) in (1, 2) + and isinstance(node.args[0], ast.Constant) + and isinstance(node.args[0].value, str) + ): + # we've found a .get() call on the name we're looking for + self.keys.add(node.args[0].value) + + +class IsFunctionArgDict(ast.NodeVisitor): + def __init__(self) -> None: + self.keys: Set[str] = set() + + def visit_Lambda(self, node: ast.Lambda) -> Any: + input_arg_name = node.args.args[0].arg + IsLocalDict(input_arg_name, self.keys).visit(node.body) + + def visit_FunctionDef(self, node: ast.FunctionDef) -> Any: + input_arg_name = node.args.args[0].arg + IsLocalDict(input_arg_name, self.keys).visit(node) + + def visit_AsyncFunctionDef(self, node: ast.AsyncFunctionDef) -> Any: + input_arg_name = node.args.args[0].arg + IsLocalDict(input_arg_name, self.keys).visit(node) + + +def get_function_first_arg_dict_keys(func: Callable) -> Optional[List[str]]: + try: + code = inspect.getsource(func) + tree = ast.parse(textwrap.dedent(code)) + visitor = IsFunctionArgDict() + visitor.visit(tree) + return list(visitor.keys) if visitor.keys else None + except (TypeError, OSError): + return None diff --git a/libs/langchain/langchain/tools/base.py b/libs/langchain/langchain/tools/base.py index 69ce73f6037df..2310927ac25bc 100644 --- a/libs/langchain/langchain/tools/base.py +++ b/libs/langchain/langchain/tools/base.py @@ -187,6 +187,14 @@ def args(self) -> dict: # --- Runnable --- + @property + def input_schema(self) -> Type[BaseModel]: + """The tool's input schema.""" + if self.args_schema is not None: + return self.args_schema + else: + return create_schema_from_function(self.name, self._run) + def invoke( self, input: Union[str, Dict], diff --git a/libs/langchain/tests/unit_tests/schema/runnable/__snapshots__/test_runnable.ambr b/libs/langchain/tests/unit_tests/schema/runnable/__snapshots__/test_runnable.ambr index fb950d5b53f06..489d401f2a85c 100644 --- a/libs/langchain/tests/unit_tests/schema/runnable/__snapshots__/test_runnable.ambr +++ b/libs/langchain/tests/unit_tests/schema/runnable/__snapshots__/test_runnable.ambr @@ -467,7 +467,7 @@ # --- # name: test_combining_sequences.3 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'runnable', 'RunnableSequence'], 'kwargs': {'first': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, 'middle': [{'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo, bar'], sleep=None, i=0)"}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}, {'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'schema', 'runnable', 'base', 'RunnableLambda'], 'repr': 'RunnableLambda(...)'}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nicer assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, {'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['baz, qux'], sleep=None, i=0)"}], 'last': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=None, tags=[], execution_order=None, child_execution_order=None, child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptValue'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'SystemMessage'], 'kwargs': {'content': 'You are a nice assistant.', 'additional_kwargs': {}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'HumanMessage'], 'kwargs': {'content': 'What is your name?', 'additional_kwargs': {}}}]}}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={'invocation_params': {'responses': ['foo, bar'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo, bar'], sleep=None, i=0)"}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo, bar', 'generation_info': None, 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo, bar'}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'input': AIMessage(content='foo, bar', additional_kwargs={}, example=False)}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000004'), name='', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'schema', 'runnable', 'base', 'RunnableLambda'], 'repr': 'RunnableLambda(...)'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'input': ['foo', 'bar']}, outputs={'question': 'foobar'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:4'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000005'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nicer assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'foobar'}, outputs={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptValue'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'SystemMessage'], 'kwargs': {'content': 'You are a nicer assistant.', 'additional_kwargs': {}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'HumanMessage'], 'kwargs': {'content': 'foobar', 'additional_kwargs': {}}}]}}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:5'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000006'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={'invocation_params': {'responses': ['baz, qux'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['baz, qux'], sleep=None, i=0)"}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'prompts': ['System: You are a nicer assistant.\nHuman: foobar']}, outputs={'generations': [[{'text': 'baz, qux', 'generation_info': None, 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'baz, qux'}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:6'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000007'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'input': AIMessage(content='baz, qux', additional_kwargs={}, example=False)}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:7'], execution_order=None, child_execution_order=None, child_runs=[])]), + Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'runnable', 'RunnableSequence'], 'kwargs': {'first': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, 'middle': [{'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo, bar'], sleep=None, i=0)"}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}, {'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'schema', 'runnable', 'base', 'RunnableLambda'], 'repr': 'RunnableLambda(...)'}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nicer assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, {'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['baz, qux'], sleep=None, i=0)"}], 'last': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=None, tags=[], execution_order=None, child_execution_order=None, child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptValue'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'SystemMessage'], 'kwargs': {'content': 'You are a nice assistant.', 'additional_kwargs': {}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'HumanMessage'], 'kwargs': {'content': 'What is your name?', 'additional_kwargs': {}}}]}}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={'invocation_params': {'responses': ['foo, bar'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo, bar'], sleep=None, i=0)"}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo, bar', 'generation_info': None, 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo, bar'}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'input': AIMessage(content='foo, bar', additional_kwargs={}, type='ai', example=False)}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000004'), name='', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'schema', 'runnable', 'base', 'RunnableLambda'], 'repr': 'RunnableLambda(...)'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'input': ['foo', 'bar']}, outputs={'question': 'foobar'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:4'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000005'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nicer assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'foobar'}, outputs={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptValue'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'SystemMessage'], 'kwargs': {'content': 'You are a nicer assistant.', 'additional_kwargs': {}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'HumanMessage'], 'kwargs': {'content': 'foobar', 'additional_kwargs': {}}}]}}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:5'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000006'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={'invocation_params': {'responses': ['baz, qux'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['baz, qux'], sleep=None, i=0)"}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'prompts': ['System: You are a nicer assistant.\nHuman: foobar']}, outputs={'generations': [[{'text': 'baz, qux', 'generation_info': None, 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'baz, qux'}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:6'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000007'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'input': AIMessage(content='baz, qux', additional_kwargs={}, type='ai', example=False)}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:7'], execution_order=None, child_execution_order=None, child_runs=[])]), ]) # --- # name: test_each @@ -1056,7 +1056,7 @@ # --- # name: test_prompt_with_chat_model.1 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'runnable', 'RunnableSequence'], 'kwargs': {'first': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, 'last': {'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo'], sleep=None, i=0)"}}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'output': AIMessage(content='foo', additional_kwargs={}, example=False)}, reference_example_id=None, parent_run_id=None, tags=[], execution_order=None, child_execution_order=None, child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptValue'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'SystemMessage'], 'kwargs': {'content': 'You are a nice assistant.', 'additional_kwargs': {}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'HumanMessage'], 'kwargs': {'content': 'What is your name?', 'additional_kwargs': {}}}]}}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={'invocation_params': {'responses': ['foo'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo'], sleep=None, i=0)"}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo'}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], execution_order=None, child_execution_order=None, child_runs=[])]), + Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'runnable', 'RunnableSequence'], 'kwargs': {'first': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, 'last': {'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo'], sleep=None, i=0)"}}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'output': AIMessage(content='foo', additional_kwargs={}, type='ai', example=False)}, reference_example_id=None, parent_run_id=None, tags=[], execution_order=None, child_execution_order=None, child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptValue'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'SystemMessage'], 'kwargs': {'content': 'You are a nice assistant.', 'additional_kwargs': {}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'HumanMessage'], 'kwargs': {'content': 'What is your name?', 'additional_kwargs': {}}}]}}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={'invocation_params': {'responses': ['foo'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo'], sleep=None, i=0)"}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo'}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], execution_order=None, child_execution_order=None, child_runs=[])]), ]) # --- # name: test_prompt_with_chat_model_and_parser @@ -1176,7 +1176,7 @@ # --- # name: test_prompt_with_chat_model_and_parser.1 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'runnable', 'RunnableSequence'], 'kwargs': {'first': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, 'middle': [{'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo, bar'], sleep=None, i=0)"}], 'last': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=None, tags=[], execution_order=None, child_execution_order=None, child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptValue'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'SystemMessage'], 'kwargs': {'content': 'You are a nice assistant.', 'additional_kwargs': {}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'HumanMessage'], 'kwargs': {'content': 'What is your name?', 'additional_kwargs': {}}}]}}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={'invocation_params': {'responses': ['foo, bar'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo, bar'], sleep=None, i=0)"}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo, bar', 'generation_info': None, 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo, bar'}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'input': AIMessage(content='foo, bar', additional_kwargs={}, example=False)}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], execution_order=None, child_execution_order=None, child_runs=[])]), + Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'runnable', 'RunnableSequence'], 'kwargs': {'first': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, 'middle': [{'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo, bar'], sleep=None, i=0)"}], 'last': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=None, tags=[], execution_order=None, child_execution_order=None, child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string', 'partial_variables': {}}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string', 'partial_variables': {}}}}}], 'input_variables': ['question']}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'question': 'What is your name?'}, outputs={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptValue'], 'kwargs': {'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'SystemMessage'], 'kwargs': {'content': 'You are a nice assistant.', 'additional_kwargs': {}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'HumanMessage'], 'kwargs': {'content': 'What is your name?', 'additional_kwargs': {}}}]}}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={'invocation_params': {'responses': ['foo, bar'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain', 'chat_models', 'fake', 'FakeListChatModel'], 'repr': "FakeListChatModel(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, responses=['foo, bar'], sleep=None, i=0)"}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo, bar', 'generation_info': None, 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo, bar'}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], execution_order=None, child_execution_order=None, child_runs=[]), Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0)}], inputs={'input': AIMessage(content='foo, bar', additional_kwargs={}, type='ai', example=False)}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], execution_order=None, child_execution_order=None, child_runs=[])]), ]) # --- # name: test_prompt_with_llm @@ -1635,6 +1635,1289 @@ } ''' # --- +# name: test_schemas + dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + '$ref': '#/definitions/StringPromptValue', + }), + dict({ + '$ref': '#/definitions/ChatPromptValueConcrete', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'definitions': dict({ + 'AIMessage': dict({ + 'description': 'A Message from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'ai', + 'enum': list([ + 'ai', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessage', + 'type': 'object', + }), + 'ChatMessage': dict({ + 'description': 'A Message that can be assigned an arbitrary speaker (i.e. role).', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'default': 'chat', + 'enum': list([ + 'chat', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessage', + 'type': 'object', + }), + 'ChatPromptValueConcrete': dict({ + 'description': ''' + Chat prompt value which explicitly lists out the message types it accepts. + For use in external schemas. + ''', + 'properties': dict({ + 'messages': dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + ]), + }), + 'title': 'Messages', + 'type': 'array', + }), + }), + 'required': list([ + 'messages', + ]), + 'title': 'ChatPromptValueConcrete', + 'type': 'object', + }), + 'FunctionMessage': dict({ + 'description': 'A Message for passing the result of executing a function back to a model.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'type': dict({ + 'default': 'function', + 'enum': list([ + 'function', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessage', + 'type': 'object', + }), + 'HumanMessage': dict({ + 'description': 'A Message from a human.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'human', + 'enum': list([ + 'human', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessage', + 'type': 'object', + }), + 'StringPromptValue': dict({ + 'description': 'String prompt value.', + 'properties': dict({ + 'text': dict({ + 'title': 'Text', + 'type': 'string', + }), + }), + 'required': list([ + 'text', + ]), + 'title': 'StringPromptValue', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'description': ''' + A Message for priming AI behavior, usually passed in as the first of a sequence + of input messages. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'type': dict({ + 'default': 'system', + 'enum': list([ + 'system', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessage', + 'type': 'object', + }), + }), + 'title': 'FakeListLLMInput', + }) +# --- +# name: test_schemas.1 + dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + '$ref': '#/definitions/StringPromptValue', + }), + dict({ + '$ref': '#/definitions/ChatPromptValueConcrete', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'definitions': dict({ + 'AIMessage': dict({ + 'description': 'A Message from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'ai', + 'enum': list([ + 'ai', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessage', + 'type': 'object', + }), + 'ChatMessage': dict({ + 'description': 'A Message that can be assigned an arbitrary speaker (i.e. role).', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'default': 'chat', + 'enum': list([ + 'chat', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessage', + 'type': 'object', + }), + 'ChatPromptValueConcrete': dict({ + 'description': ''' + Chat prompt value which explicitly lists out the message types it accepts. + For use in external schemas. + ''', + 'properties': dict({ + 'messages': dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + ]), + }), + 'title': 'Messages', + 'type': 'array', + }), + }), + 'required': list([ + 'messages', + ]), + 'title': 'ChatPromptValueConcrete', + 'type': 'object', + }), + 'FunctionMessage': dict({ + 'description': 'A Message for passing the result of executing a function back to a model.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'type': dict({ + 'default': 'function', + 'enum': list([ + 'function', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessage', + 'type': 'object', + }), + 'HumanMessage': dict({ + 'description': 'A Message from a human.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'human', + 'enum': list([ + 'human', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessage', + 'type': 'object', + }), + 'StringPromptValue': dict({ + 'description': 'String prompt value.', + 'properties': dict({ + 'text': dict({ + 'title': 'Text', + 'type': 'string', + }), + }), + 'required': list([ + 'text', + ]), + 'title': 'StringPromptValue', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'description': ''' + A Message for priming AI behavior, usually passed in as the first of a sequence + of input messages. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'type': dict({ + 'default': 'system', + 'enum': list([ + 'system', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessage', + 'type': 'object', + }), + }), + 'title': 'FakeListChatModelInput', + }) +# --- +# name: test_schemas.2 + dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/HumanMessageChunk', + }), + dict({ + '$ref': '#/definitions/AIMessageChunk', + }), + dict({ + '$ref': '#/definitions/ChatMessageChunk', + }), + dict({ + '$ref': '#/definitions/FunctionMessageChunk', + }), + dict({ + '$ref': '#/definitions/SystemMessageChunk', + }), + ]), + 'definitions': dict({ + 'AIMessageChunk': dict({ + 'description': 'A Message chunk from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'ai', + 'enum': list([ + 'ai', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessageChunk', + 'type': 'object', + }), + 'ChatMessageChunk': dict({ + 'description': 'A Chat Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'default': 'chat', + 'enum': list([ + 'chat', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessageChunk', + 'type': 'object', + }), + 'FunctionMessageChunk': dict({ + 'description': 'A Function Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'type': dict({ + 'default': 'function', + 'enum': list([ + 'function', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessageChunk', + 'type': 'object', + }), + 'HumanMessageChunk': dict({ + 'description': 'A Human Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'human', + 'enum': list([ + 'human', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessageChunk', + 'type': 'object', + }), + 'SystemMessageChunk': dict({ + 'description': 'A System Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'type': dict({ + 'default': 'system', + 'enum': list([ + 'system', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessageChunk', + 'type': 'object', + }), + }), + 'title': 'FakeListChatModelOutput', + }) +# --- +# name: test_schemas.3 + dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/StringPromptValue', + }), + dict({ + '$ref': '#/definitions/ChatPromptValueConcrete', + }), + ]), + 'definitions': dict({ + 'AIMessage': dict({ + 'description': 'A Message from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'ai', + 'enum': list([ + 'ai', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessage', + 'type': 'object', + }), + 'ChatMessage': dict({ + 'description': 'A Message that can be assigned an arbitrary speaker (i.e. role).', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'default': 'chat', + 'enum': list([ + 'chat', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessage', + 'type': 'object', + }), + 'ChatPromptValueConcrete': dict({ + 'description': ''' + Chat prompt value which explicitly lists out the message types it accepts. + For use in external schemas. + ''', + 'properties': dict({ + 'messages': dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + ]), + }), + 'title': 'Messages', + 'type': 'array', + }), + }), + 'required': list([ + 'messages', + ]), + 'title': 'ChatPromptValueConcrete', + 'type': 'object', + }), + 'FunctionMessage': dict({ + 'description': 'A Message for passing the result of executing a function back to a model.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'type': dict({ + 'default': 'function', + 'enum': list([ + 'function', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessage', + 'type': 'object', + }), + 'HumanMessage': dict({ + 'description': 'A Message from a human.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'human', + 'enum': list([ + 'human', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessage', + 'type': 'object', + }), + 'StringPromptValue': dict({ + 'description': 'String prompt value.', + 'properties': dict({ + 'text': dict({ + 'title': 'Text', + 'type': 'string', + }), + }), + 'required': list([ + 'text', + ]), + 'title': 'StringPromptValue', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'description': ''' + A Message for priming AI behavior, usually passed in as the first of a sequence + of input messages. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'type': dict({ + 'default': 'system', + 'enum': list([ + 'system', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessage', + 'type': 'object', + }), + }), + 'title': 'PromptTemplateOutput', + }) +# --- +# name: test_schemas.4 + dict({ + 'definitions': dict({ + 'AIMessage': dict({ + 'description': 'A Message from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'ai', + 'enum': list([ + 'ai', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessage', + 'type': 'object', + }), + 'ChatMessage': dict({ + 'description': 'A Message that can be assigned an arbitrary speaker (i.e. role).', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'default': 'chat', + 'enum': list([ + 'chat', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessage', + 'type': 'object', + }), + 'ChatPromptValueConcrete': dict({ + 'description': ''' + Chat prompt value which explicitly lists out the message types it accepts. + For use in external schemas. + ''', + 'properties': dict({ + 'messages': dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + ]), + }), + 'title': 'Messages', + 'type': 'array', + }), + }), + 'required': list([ + 'messages', + ]), + 'title': 'ChatPromptValueConcrete', + 'type': 'object', + }), + 'FunctionMessage': dict({ + 'description': 'A Message for passing the result of executing a function back to a model.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'type': dict({ + 'default': 'function', + 'enum': list([ + 'function', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessage', + 'type': 'object', + }), + 'HumanMessage': dict({ + 'description': 'A Message from a human.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'human', + 'enum': list([ + 'human', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessage', + 'type': 'object', + }), + 'PromptTemplateOutput': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/StringPromptValue', + }), + dict({ + '$ref': '#/definitions/ChatPromptValueConcrete', + }), + ]), + 'title': 'PromptTemplateOutput', + }), + 'StringPromptValue': dict({ + 'description': 'String prompt value.', + 'properties': dict({ + 'text': dict({ + 'title': 'Text', + 'type': 'string', + }), + }), + 'required': list([ + 'text', + ]), + 'title': 'StringPromptValue', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'description': ''' + A Message for priming AI behavior, usually passed in as the first of a sequence + of input messages. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'type': dict({ + 'default': 'system', + 'enum': list([ + 'system', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessage', + 'type': 'object', + }), + }), + 'items': dict({ + '$ref': '#/definitions/PromptTemplateOutput', + }), + 'title': 'RunnableEachOutput', + 'type': 'array', + }) +# --- +# name: test_schemas.5 + dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + ]), + 'definitions': dict({ + 'AIMessage': dict({ + 'description': 'A Message from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'ai', + 'enum': list([ + 'ai', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessage', + 'type': 'object', + }), + 'ChatMessage': dict({ + 'description': 'A Message that can be assigned an arbitrary speaker (i.e. role).', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'default': 'chat', + 'enum': list([ + 'chat', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessage', + 'type': 'object', + }), + 'FunctionMessage': dict({ + 'description': 'A Message for passing the result of executing a function back to a model.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'type': dict({ + 'default': 'function', + 'enum': list([ + 'function', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessage', + 'type': 'object', + }), + 'HumanMessage': dict({ + 'description': 'A Message from a human.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'type': dict({ + 'default': 'human', + 'enum': list([ + 'human', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessage', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'description': ''' + A Message for priming AI behavior, usually passed in as the first of a sequence + of input messages. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'title': 'Content', + 'type': 'string', + }), + 'type': dict({ + 'default': 'system', + 'enum': list([ + 'system', + ]), + 'title': 'Type', + 'type': 'string', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessage', + 'type': 'object', + }), + }), + 'title': 'CommaSeparatedListOutputParserInput', + }) +# --- # name: test_seq_dict_prompt_llm ''' { diff --git a/libs/langchain/tests/unit_tests/schema/runnable/test_runnable.py b/libs/langchain/tests/unit_tests/schema/runnable/test_runnable.py index 5507e63d35cd5..5f3ca62631d7d 100644 --- a/libs/langchain/tests/unit_tests/schema/runnable/test_runnable.py +++ b/libs/langchain/tests/unit_tests/schema/runnable/test_runnable.py @@ -1,3 +1,4 @@ +import sys from operator import itemgetter from typing import Any, Dict, List, Optional, Sequence, Union, cast from uuid import UUID @@ -12,6 +13,8 @@ from langchain.callbacks.tracers.log_stream import RunLog, RunLogPatch from langchain.callbacks.tracers.schemas import Run from langchain.callbacks.tracers.stdout import ConsoleCallbackHandler +from langchain.chains.question_answering import load_qa_chain +from langchain.chains.summarize import load_summarize_chain from langchain.chat_models.fake import FakeListChatModel from langchain.llms.fake import FakeListLLM, FakeStreamingListLLM from langchain.load.dump import dumpd, dumps @@ -43,6 +46,7 @@ RunnableSequence, RunnableWithFallbacks, ) +from langchain.tools.json.tool import JsonListKeysTool, JsonSpec class FakeTracer(BaseTracer): @@ -115,6 +119,412 @@ async def _aget_relevant_documents( return [Document(page_content="foo"), Document(page_content="bar")] +def test_schemas(snapshot: SnapshotAssertion) -> None: + fake = FakeRunnable() # str -> int + + assert fake.input_schema.schema() == { + "title": "FakeRunnableInput", + "type": "string", + } + assert fake.output_schema.schema() == { + "title": "FakeRunnableOutput", + "type": "integer", + } + + fake_bound = FakeRunnable().bind(a="b") # str -> int + + assert fake_bound.input_schema.schema() == { + "title": "FakeRunnableInput", + "type": "string", + } + assert fake_bound.output_schema.schema() == { + "title": "FakeRunnableOutput", + "type": "integer", + } + + fake_w_fallbacks = FakeRunnable().with_fallbacks((fake,)) # str -> int + + assert fake_w_fallbacks.input_schema.schema() == { + "title": "FakeRunnableInput", + "type": "string", + } + assert fake_w_fallbacks.output_schema.schema() == { + "title": "FakeRunnableOutput", + "type": "integer", + } + + def typed_lambda_impl(x: str) -> int: + return len(x) + + typed_lambda = RunnableLambda(typed_lambda_impl) # str -> int + + assert typed_lambda.input_schema.schema() == { + "title": "RunnableLambdaInput", + "type": "string", + } + assert typed_lambda.output_schema.schema() == { + "title": "RunnableLambdaOutput", + "type": "integer", + } + + async def typed_async_lambda_impl(x: str) -> int: + return len(x) + + typed_async_lambda: Runnable = RunnableLambda(typed_async_lambda_impl) # str -> int + + assert typed_async_lambda.input_schema.schema() == { + "title": "RunnableLambdaInput", + "type": "string", + } + assert typed_async_lambda.output_schema.schema() == { + "title": "RunnableLambdaOutput", + "type": "integer", + } + + fake_ret = FakeRetriever() # str -> List[Document] + + assert fake_ret.input_schema.schema() == { + "title": "FakeRetrieverInput", + "type": "string", + } + assert fake_ret.output_schema.schema() == { + "title": "FakeRetrieverOutput", + "type": "array", + "items": {"$ref": "#/definitions/Document"}, + "definitions": { + "Document": { + "title": "Document", + "description": "Class for storing a piece of text and associated metadata.", # noqa: E501 + "type": "object", + "properties": { + "page_content": {"title": "Page Content", "type": "string"}, + "metadata": {"title": "Metadata", "type": "object"}, + }, + "required": ["page_content"], + } + }, + } + + fake_llm = FakeListLLM(responses=["a"]) # str -> List[List[str]] + + assert fake_llm.input_schema.schema() == snapshot + assert fake_llm.output_schema.schema() == { + "title": "FakeListLLMOutput", + "type": "string", + } + + fake_chat = FakeListChatModel(responses=["a"]) # str -> List[List[str]] + + assert fake_chat.input_schema.schema() == snapshot + assert fake_chat.output_schema.schema() == snapshot + + prompt = PromptTemplate.from_template("Hello, {name}!") + + assert prompt.input_schema.schema() == { + "title": "PromptInput", + "type": "object", + "properties": {"name": {"title": "Name"}}, + } + assert prompt.output_schema.schema() == snapshot + + prompt_mapper = PromptTemplate.from_template("Hello, {name}!").map() + + assert prompt_mapper.input_schema.schema() == { + "definitions": { + "PromptInput": { + "properties": {"name": {"title": "Name"}}, + "title": "PromptInput", + "type": "object", + } + }, + "items": {"$ref": "#/definitions/PromptInput"}, + "type": "array", + "title": "RunnableEachInput", + } + assert prompt_mapper.output_schema.schema() == snapshot + + list_parser = CommaSeparatedListOutputParser() + + assert list_parser.input_schema.schema() == snapshot + assert list_parser.output_schema.schema() == { + "title": "CommaSeparatedListOutputParserOutput", + "type": "array", + "items": {"type": "string"}, + } + + seq = prompt | fake_llm | list_parser + + assert seq.input_schema.schema() == { + "title": "PromptInput", + "type": "object", + "properties": {"name": {"title": "Name"}}, + } + assert seq.output_schema.schema() == { + "type": "array", + "items": {"type": "string"}, + "title": "CommaSeparatedListOutputParserOutput", + } + + router: Runnable = RouterRunnable({}) + + assert router.input_schema.schema() == { + "title": "RouterRunnableInput", + "$ref": "#/definitions/RouterInput", + "definitions": { + "RouterInput": { + "title": "RouterInput", + "type": "object", + "properties": { + "key": {"title": "Key", "type": "string"}, + "input": {"title": "Input"}, + }, + "required": ["key", "input"], + } + }, + } + assert router.output_schema.schema() == {"title": "RouterRunnableOutput"} + + seq_w_map: Runnable = ( + prompt + | fake_llm + | { + "original": RunnablePassthrough(input_type=str), + "as_list": list_parser, + "length": typed_lambda_impl, + } + ) + + assert seq_w_map.input_schema.schema() == { + "title": "PromptInput", + "type": "object", + "properties": {"name": {"title": "Name"}}, + } + assert seq_w_map.output_schema.schema() == { + "title": "RunnableMapOutput", + "type": "object", + "properties": { + "original": {"title": "Original", "type": "string"}, + "length": {"title": "Length", "type": "integer"}, + "as_list": { + "title": "As List", + "type": "array", + "items": {"type": "string"}, + }, + }, + } + + json_list_keys_tool = JsonListKeysTool(spec=JsonSpec(dict_={})) + + assert json_list_keys_tool.input_schema.schema() == { + "title": "json_spec_list_keysSchema", + "type": "object", + "properties": {"tool_input": {"title": "Tool Input", "type": "string"}}, + "required": ["tool_input"], + } + assert json_list_keys_tool.output_schema.schema() == { + "title": "JsonListKeysToolOutput" + } + + +@pytest.mark.skipif( + sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." +) +def test_lambda_schemas() -> None: + first_lambda = lambda x: x["hello"] # noqa: E731 + assert RunnableLambda(first_lambda).input_schema.schema() == { + "title": "RunnableLambdaInput", + "type": "object", + "properties": {"hello": {"title": "Hello"}}, + } + + second_lambda = lambda x, y: (x["hello"], x["bye"], y["bah"]) # noqa: E731 + assert RunnableLambda( + second_lambda, # type: ignore[arg-type] + ).input_schema.schema() == { + "title": "RunnableLambdaInput", + "type": "object", + "properties": {"hello": {"title": "Hello"}, "bye": {"title": "Bye"}}, + } + + def get_value(input): # type: ignore[no-untyped-def] + return input["variable_name"] + + assert RunnableLambda(get_value).input_schema.schema() == { + "title": "RunnableLambdaInput", + "type": "object", + "properties": {"variable_name": {"title": "Variable Name"}}, + } + + async def aget_value(input): # type: ignore[no-untyped-def] + return (input["variable_name"], input.get("another")) + + assert RunnableLambda(aget_value).input_schema.schema() == { + "title": "RunnableLambdaInput", + "type": "object", + "properties": { + "another": {"title": "Another"}, + "variable_name": {"title": "Variable Name"}, + }, + } + + async def aget_values(input): # type: ignore[no-untyped-def] + return { + "hello": input["variable_name"], + "bye": input["variable_name"], + "byebye": input["yo"], + } + + assert RunnableLambda(aget_values).input_schema.schema() == { + "title": "RunnableLambdaInput", + "type": "object", + "properties": { + "variable_name": {"title": "Variable Name"}, + "yo": {"title": "Yo"}, + }, + } + + +def test_schema_complex_seq() -> None: + prompt1 = ChatPromptTemplate.from_template("what is the city {person} is from?") + prompt2 = ChatPromptTemplate.from_template( + "what country is the city {city} in? respond in {language}" + ) + + model = FakeListChatModel(responses=[""]) + + chain1 = prompt1 | model | StrOutputParser() + + chain2: Runnable = ( + {"city": chain1, "language": itemgetter("language")} + | prompt2 + | model + | StrOutputParser() + ) + + assert chain2.input_schema.schema() == { + "title": "RunnableMapInput", + "type": "object", + "properties": { + "person": {"title": "Person"}, + "language": {"title": "Language"}, + }, + } + + assert chain2.output_schema.schema() == { + "title": "StrOutputParserOutput", + "type": "string", + } + + +def test_schema_chains() -> None: + model = FakeListChatModel(responses=[""]) + + stuff_chain = load_summarize_chain(model) + + assert stuff_chain.input_schema.schema() == { + "title": "CombineDocumentsInput", + "type": "object", + "properties": { + "input_documents": { + "title": "Input Documents", + "type": "array", + "items": {"$ref": "#/definitions/Document"}, + } + }, + "definitions": { + "Document": { + "title": "Document", + "description": "Class for storing a piece of text and associated metadata.", # noqa: E501 + "type": "object", + "properties": { + "page_content": {"title": "Page Content", "type": "string"}, + "metadata": {"title": "Metadata", "type": "object"}, + }, + "required": ["page_content"], + } + }, + } + assert stuff_chain.output_schema.schema() == { + "title": "CombineDocumentsOutput", + "type": "object", + "properties": {"output_text": {"title": "Output Text", "type": "string"}}, + } + + mapreduce_chain = load_summarize_chain( + model, "map_reduce", return_intermediate_steps=True + ) + + assert mapreduce_chain.input_schema.schema() == { + "title": "CombineDocumentsInput", + "type": "object", + "properties": { + "input_documents": { + "title": "Input Documents", + "type": "array", + "items": {"$ref": "#/definitions/Document"}, + } + }, + "definitions": { + "Document": { + "title": "Document", + "description": "Class for storing a piece of text and associated metadata.", # noqa: E501 + "type": "object", + "properties": { + "page_content": {"title": "Page Content", "type": "string"}, + "metadata": {"title": "Metadata", "type": "object"}, + }, + "required": ["page_content"], + } + }, + } + assert mapreduce_chain.output_schema.schema() == { + "title": "MapReduceDocumentsOutput", + "type": "object", + "properties": { + "output_text": {"title": "Output Text", "type": "string"}, + "intermediate_steps": { + "title": "Intermediate Steps", + "type": "array", + "items": {"type": "string"}, + }, + }, + } + + maprerank_chain = load_qa_chain(model, "map_rerank", metadata_keys=["hello"]) + + assert maprerank_chain.input_schema.schema() == { + "title": "CombineDocumentsInput", + "type": "object", + "properties": { + "input_documents": { + "title": "Input Documents", + "type": "array", + "items": {"$ref": "#/definitions/Document"}, + } + }, + "definitions": { + "Document": { + "title": "Document", + "description": "Class for storing a piece of text and associated metadata.", # noqa: E501 + "type": "object", + "properties": { + "page_content": {"title": "Page Content", "type": "string"}, + "metadata": {"title": "Metadata", "type": "object"}, + }, + "required": ["page_content"], + } + }, + } + assert maprerank_chain.output_schema.schema() == { + "title": "MapRerankOutput", + "type": "object", + "properties": { + "output_text": {"title": "Output Text", "type": "string"}, + "hello": {"title": "Hello"}, + }, + } + + @pytest.mark.asyncio async def test_with_config(mocker: MockerFixture) -> None: fake = FakeRunnable() @@ -2160,6 +2570,7 @@ def test_runnable_branch_init_coercion(branches: Sequence[Any]) -> None: assert isinstance(body, Runnable) assert isinstance(runnable.default, Runnable) + assert runnable.input_schema.schema() == {"title": "RunnableBranchInput"} def test_runnable_branch_invoke_call_counts(mocker: MockerFixture) -> None: