From 7dd6b32991e81582cb30588b84871af04ecdc76c Mon Sep 17 00:00:00 2001 From: Eugene Yurtsev Date: Wed, 24 Jul 2024 21:34:03 -0400 Subject: [PATCH] core[minor]: Add InMemoryRateLimiter (#21992) This PR introduces the following Runnables: 1. BaseRateLimiter: an abstraction for specifying a time based rate limiter as a Runnable 2. InMemoryRateLimiter: Provides an in-memory implementation of a rate limiter ## Example ```python from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda from datetime import datetime foo = InMemoryRateLimiter(requests_per_second=0.5) def meow(x): print(datetime.now().strftime("%H:%M:%S.%f")) return x chain = foo | meow for _ in range(10): print(chain.invoke('hello')) ``` Produces: ``` 17:12:07.530151 hello 17:12:09.537932 hello 17:12:11.548375 hello 17:12:13.558383 hello 17:12:15.568348 hello 17:12:17.578171 hello 17:12:19.587508 hello 17:12:21.597877 hello 17:12:23.607707 hello 17:12:25.617978 hello ``` ![image](https://github.com/user-attachments/assets/283af59f-e1e1-408b-8e75-d3910c3c44cc) ## Interface The rate limiter uses the following interface for acquiring a token: ```python class BaseRateLimiter(Runnable[Input, Output], abc.ABC): @abc.abstractmethod def acquire(self, *, blocking: bool = True) -> bool: """Attempt to acquire the necessary tokens for the rate limiter.``` ``` The flag `blocking` has been added to the abstraction to allow supporting streaming (which is easier if blocking=False). ## Limitations - The rate limiter is not designed to work across different processes. It is an in-memory rate limiter, but it is thread safe. - The rate limiter only supports time-based rate limiting. It does not take into account the size of the request or any other factors. - The current implementation does not handle streaming inputs well and will consume all inputs even if the rate limit has been reached. Better support for streaming inputs will be added in the future. - When the rate limiter is combined with another runnable via a RunnableSequence, usage of .batch() or .abatch() will only respect the average rate limit. There will be bursty behavior as .batch() and .abatch() wait for each step to complete before starting the next step. One way to mitigate this is to use batch_as_completed() or abatch_as_completed(). ## Bursty behavior in `batch` and `abatch` When the rate limiter is combined with another runnable via a RunnableSequence, usage of .batch() or .abatch() will only respect the average rate limit. There will be bursty behavior as .batch() and .abatch() wait for each step to complete before starting the next step. This becomes a problem if users are using `batch` and `abatch` with many inputs (e.g., 100). In this case, there will be a burst of 100 inputs into the batch of the rate limited runnable. 1. Using a RunnableBinding The API would look like: ```python from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda rate_limiter = InMemoryRateLimiter(requests_per_second=0.5) def meow(x): return x rate_limited_meow = RunnableLambda(meow).with_rate_limiter(rate_limiter) ``` 2. Another option is to add some init option to RunnableSequence that changes `.batch()` to be depth first (e.g., by delegating to `batch_as_completed`) ```python RunnableSequence(first=rate_limiter, last=model, how='batch-depth-first') ``` Pros: Does not require Runnable Binding Cons: Feels over-complicated --- .../core/langchain_core/runnables/__init__.py | 2 + .../langchain_core/runnables/rate_limiter.py | 319 ++++++++++++++++++ .../unit_tests/runnables/test_imports.py | 1 + .../unit_tests/runnables/test_rate_limiter.py | 145 ++++++++ 4 files changed, 467 insertions(+) create mode 100644 libs/core/langchain_core/runnables/rate_limiter.py create mode 100644 libs/core/tests/unit_tests/runnables/test_rate_limiter.py diff --git a/libs/core/langchain_core/runnables/__init__.py b/libs/core/langchain_core/runnables/__init__.py index 44c95519c0808..5ec88752bc112 100644 --- a/libs/core/langchain_core/runnables/__init__.py +++ b/libs/core/langchain_core/runnables/__init__.py @@ -43,6 +43,7 @@ RunnablePassthrough, RunnablePick, ) +from langchain_core.runnables.rate_limiter import InMemoryRateLimiter from langchain_core.runnables.router import RouterInput, RouterRunnable from langchain_core.runnables.utils import ( AddableDict, @@ -64,6 +65,7 @@ "ensure_config", "run_in_executor", "patch_config", + "InMemoryRateLimiter", "RouterInput", "RouterRunnable", "Runnable", diff --git a/libs/core/langchain_core/runnables/rate_limiter.py b/libs/core/langchain_core/runnables/rate_limiter.py new file mode 100644 index 0000000000000..378d73affb2ba --- /dev/null +++ b/libs/core/langchain_core/runnables/rate_limiter.py @@ -0,0 +1,319 @@ +"""Interface and implementation for time based rate limiters. + +This module defines an interface for rate limiting requests based on time. + +The interface cannot account for the size of the request or any other factors. + +The module also provides an in-memory implementation of the rate limiter. +""" + +from __future__ import annotations + +import abc +import asyncio +import threading +import time +from typing import ( + Any, + Optional, + cast, +) + +from langchain_core._api import beta +from langchain_core.runnables import RunnableConfig +from langchain_core.runnables.base import ( + Input, + Output, + Runnable, +) + + +@beta(message="Introduced in 0.2.24. API subject to change.") +class BaseRateLimiter(Runnable[Input, Output], abc.ABC): + """Base class for rate limiters. + + Usage of the base limiter is through the acquire and aacquire methods depending + on whether running in a sync or async context. + + Implementations are free to add a timeout parameter to their initialize method + to allow users to specify a timeout for acquiring the necessary tokens when + using a blocking call. + + Current limitations: + + - The rate limiter is not designed to work across different processes. It is + an in-memory rate limiter, but it is thread safe. + - The rate limiter only supports time-based rate limiting. It does not take + into account the size of the request or any other factors. + - The current implementation does not handle streaming inputs well and will + consume all inputs even if the rate limit has not been reached. Better support + for streaming inputs will be added in the future. + - When the rate limiter is combined with another runnable via a RunnableSequence, + usage of .batch() or .abatch() will only respect the average rate limit. + There will be bursty behavior as .batch() and .abatch() wait for each step + to complete before starting the next step. One way to mitigate this is to + use batch_as_completed() or abatch_as_completed(). + + .. versionadded:: 0.2.24 + """ + + @abc.abstractmethod + def acquire(self, *, blocking: bool = True) -> bool: + """Attempt to acquire the necessary tokens for the rate limiter. + + This method blocks until the required tokens are available if `blocking` + is set to True. + + If `blocking` is set to False, the method will immediately return the result + of the attempt to acquire the tokens. + + Args: + blocking: If True, the method will block until the tokens are available. + If False, the method will return immediately with the result of + the attempt. Defaults to True. + + Returns: + True if the tokens were successfully acquired, False otherwise. + """ + + @abc.abstractmethod + async def aacquire(self, *, blocking: bool = True) -> bool: + """Attempt to acquire the necessary tokens for the rate limiter. + + This method blocks until the required tokens are available if `blocking` + is set to True. + + If `blocking` is set to False, the method will immediately return the result + of the attempt to acquire the tokens. + + Args: + blocking: If True, the method will block until the tokens are available. + If False, the method will return immediately with the result of + the attempt. Defaults to True. + + Returns: + True if the tokens were successfully acquired, False otherwise. + """ + + def invoke( + self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> Output: + """Invoke the rate limiter. + + This is a blocking call that waits until the given number of tokens are + available. + + Args: + input: The input to the rate limiter. + config: The configuration for the rate limiter. + **kwargs: Additional keyword arguments. + + Returns: + The output of the rate limiter. + """ + + def _invoke(input: Input) -> Output: + """Invoke the rate limiter. Internal function.""" + self.acquire(blocking=True) + return cast(Output, input) + + return self._call_with_config(_invoke, input, config, **kwargs) + + async def ainvoke( + self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> Output: + """Invoke the rate limiter. Async version. + + This is a blocking call that waits until the given number of tokens are + available. + + Args: + input: The input to the rate limiter. + config: The configuration for the rate limiter. + **kwargs: Additional keyword arguments. + """ + + async def _ainvoke(input: Input) -> Output: + """Invoke the rate limiter. Internal function.""" + await self.aacquire(blocking=True) + return cast(Output, input) + + return await self._acall_with_config(_ainvoke, input, config, **kwargs) + + +@beta(message="Introduced in 0.2.24. API subject to change.") +class InMemoryRateLimiter(BaseRateLimiter): + """An in memory rate limiter. + + This is an in memory rate limiter, so it cannot rate limit across + different processes. + + The rate limiter only allows time-based rate limiting and does not + take into account any information about the input or the output, so it + cannot be used to rate limit based on the size of the request. + + It is thread safe and can be used in either a sync or async context. + + The in memory rate limiter is based on a token bucket. The bucket is filled + with tokens at a given rate. Each request consumes a token. If there are + not enough tokens in the bucket, the request is blocked until there are + enough tokens. + + These *tokens* have NOTHING to do with LLM tokens. They are just + a way to keep track of how many requests can be made at a given time. + + Current limitations: + + - The rate limiter is not designed to work across different processes. It is + an in-memory rate limiter, but it is thread safe. + - The rate limiter only supports time-based rate limiting. It does not take + into account the size of the request or any other factors. + - The current implementation does not handle streaming inputs well and will + consume all inputs even if the rate limit has not been reached. Better support + for streaming inputs will be added in the future. + - When the rate limiter is combined with another runnable via a RunnableSequence, + usage of .batch() or .abatch() will only respect the average rate limit. + There will be bursty behavior as .batch() and .abatch() wait for each step + to complete before starting the next step. One way to mitigate this is to + use batch_as_completed() or abatch_as_completed(). + + Example: + + .. code-block:: python + + from langchain_core.runnables import RunnableLambda, InMemoryRateLimiter + + rate_limiter = InMemoryRateLimiter( + requests_per_second=100, check_every_n_seconds=0.1, max_bucket_size=10 + ) + + def foo(x: int) -> int: + return x + + foo_ = RunnableLambda(foo) + chain = rate_limiter | foo_ + assert chain.invoke(1) == 1 + + .. versionadded:: 0.2.24 + """ + + def __init__( + self, + *, + requests_per_second: float = 1, + check_every_n_seconds: float = 0.1, + max_bucket_size: float = 1, + ) -> None: + """A rate limiter based on a token bucket. + + These *tokens* have NOTHING to do with LLM tokens. They are just + a way to keep track of how many requests can be made at a given time. + + This rate limiter is designed to work in a threaded environment. + + It works by filling up a bucket with tokens at a given rate. Each + request consumes a given number of tokens. If there are not enough + tokens in the bucket, the request is blocked until there are enough + tokens. + + Args: + requests_per_second: The number of tokens to add per second to the bucket. + Must be at least 1. The tokens represent "credit" that can be used + to make requests. + check_every_n_seconds: check whether the tokens are available + every this many seconds. Can be a float to represent + fractions of a second. + max_bucket_size: The maximum number of tokens that can be in the bucket. + This is used to prevent bursts of requests. + """ + # Number of requests that we can make per second. + self.requests_per_second = requests_per_second + # Number of tokens in the bucket. + self.available_tokens = 0.0 + self.max_bucket_size = max_bucket_size + # A lock to ensure that tokens can only be consumed by one thread + # at a given time. + self._consume_lock = threading.Lock() + # The last time we tried to consume tokens. + self.last: Optional[float] = None + self.check_every_n_seconds = check_every_n_seconds + + def _consume(self) -> bool: + """Consume the given amount of tokens if possible. + + Returns: + True means that the tokens were consumed, and the caller can proceed to + make the request. A False means that the tokens were not consumed, and + the caller should try again later. + """ + with self._consume_lock: + now = time.time() + + # initialize on first call to avoid a burst + if self.last is None: + self.last = now + + elapsed = now - self.last + + if elapsed * self.requests_per_second >= 1: + self.available_tokens += elapsed * self.requests_per_second + self.last = now + + # Make sure that we don't exceed the bucket size. + # This is used to prevent bursts of requests. + self.available_tokens = min(self.available_tokens, self.max_bucket_size) + + # As long as we have at least one token, we can proceed. + if self.available_tokens >= 1: + self.available_tokens -= 1 + return True + + return False + + def acquire(self, *, blocking: bool = True) -> bool: + """Attempt to acquire a token from the rate limiter. + + This method blocks until the required tokens are available if `blocking` + is set to True. + + If `blocking` is set to False, the method will immediately return the result + of the attempt to acquire the tokens. + + Args: + blocking: If True, the method will block until the tokens are available. + If False, the method will return immediately with the result of + the attempt. Defaults to True. + + Returns: + True if the tokens were successfully acquired, False otherwise. + """ + if not blocking: + return self._consume() + + while not self._consume(): + time.sleep(self.check_every_n_seconds) + return True + + async def aacquire(self, *, blocking: bool = True) -> bool: + """Attempt to acquire a token from the rate limiter. Async version. + + This method blocks until the required tokens are available if `blocking` + is set to True. + + If `blocking` is set to False, the method will immediately return the result + of the attempt to acquire the tokens. + + Args: + blocking: If True, the method will block until the tokens are available. + If False, the method will return immediately with the result of + the attempt. Defaults to True. + + Returns: + True if the tokens were successfully acquired, False otherwise. + """ + if not blocking: + return self._consume() + + while not self._consume(): + await asyncio.sleep(self.check_every_n_seconds) + return True diff --git a/libs/core/tests/unit_tests/runnables/test_imports.py b/libs/core/tests/unit_tests/runnables/test_imports.py index 12b1a80d1bfe4..09e733a257ea1 100644 --- a/libs/core/tests/unit_tests/runnables/test_imports.py +++ b/libs/core/tests/unit_tests/runnables/test_imports.py @@ -11,6 +11,7 @@ "run_in_executor", "patch_config", "RouterInput", + "InMemoryRateLimiter", "RouterRunnable", "Runnable", "RunnableSerializable", diff --git a/libs/core/tests/unit_tests/runnables/test_rate_limiter.py b/libs/core/tests/unit_tests/runnables/test_rate_limiter.py new file mode 100644 index 0000000000000..b54a47e92a02a --- /dev/null +++ b/libs/core/tests/unit_tests/runnables/test_rate_limiter.py @@ -0,0 +1,145 @@ +"""Test rate limiter.""" + +import time + +import pytest +from freezegun import freeze_time + +from langchain_core.runnables import RunnableLambda +from langchain_core.runnables.rate_limiter import InMemoryRateLimiter + + +@pytest.fixture +def rate_limiter() -> InMemoryRateLimiter: + """Return an instance of InMemoryRateLimiter.""" + return InMemoryRateLimiter( + requests_per_second=2, check_every_n_seconds=0.1, max_bucket_size=2 + ) + + +def test_initial_state(rate_limiter: InMemoryRateLimiter) -> None: + """Test the initial state of the rate limiter.""" + assert rate_limiter.available_tokens == 0.0 + + +def test_sync_wait(rate_limiter: InMemoryRateLimiter) -> None: + with freeze_time("2023-01-01 00:00:00") as frozen_time: + rate_limiter.last = time.time() + assert not rate_limiter.acquire(blocking=False) + frozen_time.tick(0.1) # Increment by 0.1 seconds + assert rate_limiter.available_tokens == 0 + assert not rate_limiter.acquire(blocking=False) + frozen_time.tick(0.1) # Increment by 0.1 seconds + assert rate_limiter.available_tokens == 0 + assert not rate_limiter.acquire(blocking=False) + frozen_time.tick(1.8) + assert rate_limiter.acquire(blocking=False) + assert rate_limiter.available_tokens == 1.0 + assert rate_limiter.acquire(blocking=False) + assert rate_limiter.available_tokens == 0 + frozen_time.tick(2.1) + assert rate_limiter.acquire(blocking=False) + assert rate_limiter.available_tokens == 1 + frozen_time.tick(0.9) + assert rate_limiter.acquire(blocking=False) + assert rate_limiter.available_tokens == 1 + + # Check max bucket size + frozen_time.tick(100) + assert rate_limiter.acquire(blocking=False) + assert rate_limiter.available_tokens == 1 + + +async def test_async_wait(rate_limiter: InMemoryRateLimiter) -> None: + with freeze_time("2023-01-01 00:00:00") as frozen_time: + rate_limiter.last = time.time() + assert not await rate_limiter.aacquire(blocking=False) + frozen_time.tick(0.1) # Increment by 0.1 seconds + assert rate_limiter.available_tokens == 0 + assert not await rate_limiter.aacquire(blocking=False) + frozen_time.tick(0.1) # Increment by 0.1 seconds + assert rate_limiter.available_tokens == 0 + assert not await rate_limiter.aacquire(blocking=False) + frozen_time.tick(1.8) + assert await rate_limiter.aacquire(blocking=False) + assert rate_limiter.available_tokens == 1.0 + assert await rate_limiter.aacquire(blocking=False) + assert rate_limiter.available_tokens == 0 + frozen_time.tick(2.1) + assert await rate_limiter.aacquire(blocking=False) + assert rate_limiter.available_tokens == 1 + frozen_time.tick(0.9) + assert await rate_limiter.aacquire(blocking=False) + assert rate_limiter.available_tokens == 1 + + +def test_sync_wait_max_bucket_size() -> None: + with freeze_time("2023-01-01 00:00:00") as frozen_time: + rate_limiter = InMemoryRateLimiter( + requests_per_second=2, check_every_n_seconds=0.1, max_bucket_size=500 + ) + rate_limiter.last = time.time() + frozen_time.tick(100) # Increment by 100 seconds + assert rate_limiter.acquire(blocking=False) + # After 100 seconds we manage to refill the bucket with 200 tokens + # After consuming 1 token, we should have 199 tokens left + assert rate_limiter.available_tokens == 199.0 + frozen_time.tick(10000) + assert rate_limiter.acquire(blocking=False) + assert rate_limiter.available_tokens == 499.0 + # Assert that sync wait can proceed without blocking + # since we have enough tokens + rate_limiter.acquire(blocking=True) + + +async def test_async_wait_max_bucket_size() -> None: + with freeze_time("2023-01-01 00:00:00") as frozen_time: + rate_limiter = InMemoryRateLimiter( + requests_per_second=2, check_every_n_seconds=0.1, max_bucket_size=500 + ) + rate_limiter.last = time.time() + frozen_time.tick(100) # Increment by 100 seconds + assert await rate_limiter.aacquire(blocking=False) + # After 100 seconds we manage to refill the bucket with 200 tokens + # After consuming 1 token, we should have 199 tokens left + assert rate_limiter.available_tokens == 199.0 + frozen_time.tick(10000) + assert await rate_limiter.aacquire(blocking=False) + assert rate_limiter.available_tokens == 499.0 + # Assert that sync wait can proceed without blocking + # since we have enough tokens + await rate_limiter.aacquire(blocking=True) + + +def test_add_rate_limiter() -> None: + """Add rate limiter.""" + + def foo(x: int) -> int: + """Return x.""" + return x + + rate_limiter = InMemoryRateLimiter( + requests_per_second=100, check_every_n_seconds=0.1, max_bucket_size=10 + ) + + foo_ = RunnableLambda(foo) + chain = rate_limiter | foo_ + assert chain.invoke(1) == 1 + + +async def test_async_add_rate_limiter() -> None: + """Add rate limiter.""" + + async def foo(x: int) -> int: + """Return x.""" + return x + + rate_limiter = InMemoryRateLimiter( + requests_per_second=100, check_every_n_seconds=0.1, max_bucket_size=10 + ) + + # mypy is unable to follow the type information when + # RunnableLambda is used with an async function + foo_ = RunnableLambda(foo) # type: ignore + chain = rate_limiter | foo_ + assert (await chain.ainvoke(1)) == 1