diff --git a/cookbook/nvidia_nim_agents_llama3.1.ipynb b/cookbook/nvidia_nim_agents_llama3.1.ipynb
new file mode 100644
index 00000000..e3e13dce
--- /dev/null
+++ b/cookbook/nvidia_nim_agents_llama3.1.ipynb
@@ -0,0 +1,352 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "77d79657",
+ "metadata": {},
+ "source": [
+ "\n",
+ "# NVIDIA NIMs with Tool Calling for Agents"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f8fdde48",
+ "metadata": {
+ "jp-MarkdownHeadingCollapsed": true
+ },
+ "source": [
+ "This notebook will use a [NVIDIA Llama 3.1 NIM](https://developer.nvidia.com/blog/supercharging-llama-3-1-across-nvidia-platforms/) with tool-calling agent capabilities in generative AI solutions. As mentioned in this [Introductory Blog on LLM Agents](https://developer.nvidia.com/blog/introduction-to-llm-agents/), agents can be described as AI systems that use LLMs to reason through a problem, create a plan to solve the problem, execute the plan with the help of a set of tools, and use memory to store meaningful context of the system state. \n",
+ "\n",
+ "The notebook is designed to provide an intro to merely one of the capabilities of agent systems: **tool calling**. \n",
+ "\n",
+ "**Tools** are interfaces that accept input, execute an action, and then return a result of that action in a structured output according to a pre-defined schema. They often encompass external API calls that the agent can use to perform tasks that go beyond the capabilities of the LLM, but do not have to be external API calls. For example, to get the current weather in San Diego, a weather tool might be used. Or to get the current score of the 49ers game, a generic web search tool or ESPN tool might be used. \n",
+ "\n",
+ "## What is NVIDIA NIM and How do They Support Tool Calling for Agents?\n",
+ "### What is NIM?\n",
+ "NIM supports models across domains like chat, embedding, and re-ranking models \n",
+ "from the community as well as NVIDIA. These models are optimized by NVIDIA to deliver the best performance on NVIDIA \n",
+ "accelerated infrastructure and deployed as a NIM, an easy-to-use, prebuilt containers that deploy anywhere using a single \n",
+ "command on NVIDIA accelerated infrastructure. If you're new to NIMs with LangChain, check out the [documentation](https://python.langchain.com/v0.2/docs/integrations/providers/nvidia/).\n",
+ "\n",
+ "Now, NIMs support tool calling, also known as \"function calling\" for models that have the aforementioned capability. \n",
+ "\n",
+ "This notebook will demonstrate a model that supports function calling, [Llama 3.1 8b-instruct](https://build.nvidia.com/meta/llama-3_1-8b-instruct). \n",
+ "\n",
+ "### What does it mean for NIM to support tool usage?\n",
+ "In order to support tool usage in an agent workflow, first an LLM must be trained to detect when a function should be called and output a structured response like JSON that contains the function to be called and its arguments. \n",
+ "\n",
+ "Next, the model is packaged as a NIM, meaning it's optimized to deliver best performance on NVIDIA accelerated infrastructure and easy to deploy as well as use. This microservice packaging also uses OpenAI compatible APIs, so developers can build world-class generative AI agents with ease.\n",
+ "\n",
+ "Let's see how to use tools in a couple of examples."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "120455e4",
+ "metadata": {},
+ "source": [
+ "## 🔨 Tool Usage -- Web Search\n",
+ "\n",
+ "Since a LLM does not have access to the most up-to-date information on the Internet, [Tavily Search](https://docs.tavily.com/docs/tavily-api/introduction) acts as a tool to provide a generative AI application with real-time online information. Tavily is a search engmine that is optimized for AI developers and AI agents. A singular API call abstracts searching, scraping, filtering, and extracting relevant information from online sources. \n",
+ "\n",
+ "We'll enhance our NIM, [Llama 3.1-8b-instruct](https://build.nvidia.com/meta/llama-3_1-8b-instruct), with Tavily search. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1b8f8b6f",
+ "metadata": {},
+ "source": [
+ "Install pre-requesites. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "fe4ec61f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%pip install -U langchain langgraph langchain-nvidia-ai-endpoints langchain-community langchain-openai tavily-python geocoder"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6c65b376",
+ "metadata": {},
+ "source": [
+ "If you're using NVIDIA hosted NIMs, you'll need to use an API key which you can setup below. Follow [NVIDIA NIMs LangChain documentation](https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/) for more information on accessing and using NIMs. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "aaeb35a9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import getpass\n",
+ "import os\n",
+ "\n",
+ "os.environ[\"NVIDIA_API_KEY\"] = getpass.getpass(\"Enter your NVIDIA API key: \")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e190dc5e",
+ "metadata": {},
+ "source": [
+ "Declare your model that supports tool calling. In this example, we use [Llama 3.1-8b-instruct](https://build.nvidia.com/meta/llama-3_1-8b-instruct). "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "579881ca",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from langchain_nvidia_ai_endpoints import ChatNVIDIA\n",
+ "\n",
+ "llm = ChatNVIDIA(model=\"meta/llama-3.1-8b-instruct\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9ce17567",
+ "metadata": {},
+ "source": [
+ "Initialize [Tavily Tool](https://python.langchain.com/v0.2/docs/integrations/tools/tavily_search/)\n",
+ "\n",
+ "Note that this requires an API key - they have a free tier, but if you don't have one or don't want to create one, you can always ignore this step or use a different tool. \n",
+ "\n",
+ "Once you create your API key, you will need to set it in the environment."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c8832545-d3c1-404f-afdb-6a00891f84c9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import getpass\n",
+ "import os\n",
+ "\n",
+ "os.environ[\"TAVILY_API_KEY\"] = getpass.getpass(\"Enter your Tavily API key: \")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e1d1511d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from langchain_community.tools.tavily_search import TavilySearchResults\n",
+ "\n",
+ "# Declare a single tool, Tavily search\n",
+ "tools = [TavilySearchResults(max_results=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cd230847",
+ "metadata": {},
+ "source": [
+ "Create [ReAct agent](https://python.langchain.com/v0.2/docs/concepts/#react-agents), prebuilt in [LangGraph](https://langchain-ai.github.io/langgraph/#overview). "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "da73ae35",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from langgraph.prebuilt import create_react_agent\n",
+ "from langchain.callbacks.tracers import ConsoleCallbackHandler\n",
+ "\n",
+ "app = create_react_agent(llm, tools)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "be70d7ee",
+ "metadata": {},
+ "source": [
+ "Run agent; a callback is passed to provide more verbose output."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "02a109cc",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "query = \"What is LangChain?\"\n",
+ "messages = app.invoke({\"messages\": [(\"human\", query)]}, config={'callbacks': [ConsoleCallbackHandler()]})\n",
+ "{\n",
+ " \"input\": query,\n",
+ " \"output\": messages[\"messages\"][-1].content,\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b5e9bbb9",
+ "metadata": {},
+ "source": [
+ "## 🔨 Tool Usage -- Adding on a Custom Tool\n",
+ "\n",
+ "Let's see how to [define a custom tool](https://python.langchain.com/v0.2/docs/how_to/custom_tools/) for your NIM agent and how it handles multiple tools. \n",
+ "\n",
+ "We'll enhance the NIM with Tavily search with some custom tools to determine a user's current location (based on IP address) and return a latitude and longitude. We will use these tools to have Tavily look up the weather in the user's current location."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "46052285-7331-44c2-a7dc-34ebbe4d6b8c",
+ "metadata": {},
+ "source": [
+ "First, let's create a custom tool to determine a user's location based off IP address. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e9d8ed5f-b6e9-495f-85ff-e431d39475c4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import geocoder\n",
+ "from langchain.tools import tool\n",
+ "from typing import Tuple\n",
+ "\n",
+ "@tool\n",
+ "def get_current_location() -> list:\n",
+ " \"\"\"Return the current location of the user based on IP address\"\"\"\n",
+ " loc = geocoder.ip('me')\n",
+ " return loc.latlng "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "089e3223-50f3-4e8e-9043-24c792ca7daf",
+ "metadata": {},
+ "source": [
+ "Let's update the tools to use the Tavily tool delcared earlier and also add the `get_current_location` tool."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b71d7d05-d3ec-4005-911c-3e44df8102b4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Declare two tools: Tavily and custom get_current_location tool.\n",
+ "tools = [TavilySearchResults(max_results=1), get_current_location]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cd04f130-3f9b-4a0d-a018-d954dc41ad4b",
+ "metadata": {},
+ "source": [
+ "We already declared our LLM, so we don't need to redeclare it. However, we do want to update the agent to have the updated tools."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "64a0eead-ee86-4b0b-8ae3-fb194ea69186",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "from langgraph.prebuilt import create_react_agent\n",
+ "from langchain.globals import set_verbose\n",
+ "from langchain.callbacks.tracers import ConsoleCallbackHandler\n",
+ "\n",
+ "set_verbose(True) # verbose output to follow function calling\n",
+ "\n",
+ "query = \"What is the current weather where I am?\"\n",
+ "app = create_react_agent(llm, tools)\n",
+ "\n",
+ "\n",
+ "messages = app.invoke({\"messages\": [(\"human\", query)]}, config={'callbacks': [ConsoleCallbackHandler()]})\n",
+ "{\n",
+ " \"input\": query,\n",
+ " \"output\": messages[\"messages\"][-1].content,\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "147c4727",
+ "metadata": {},
+ "source": [
+ "In order to execute this query, first a tool to get the current location needs to be called. Then a tool to get the current weather at that location needs to be called. \n",
+ "Finally, the result is returned to the user."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8ace95bd-f2f7-469e-9d9e-ea7b4c57e8f4",
+ "metadata": {},
+ "source": [
+ "Below, you can see a diagram of the application's graph. The agent continues to use tools until the query is resolved."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "128b55cf-5ee3-42d2-897b-173a6d696921",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from IPython.display import Image, display\n",
+ "\n",
+ "display(Image(app.get_graph(xray=True).draw_mermaid_png()))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "42ce0ec8-d5bb-4ba8-b2d6-6fe3a0c0aeec",
+ "metadata": {},
+ "source": [
+ "## Conclusion\n",
+ "You've now seen how to use NIMs to do tool calling, an important capability of agents. As mentioned earlier, tools are just one part of agent capabilities, so check out other notebook so see how tools can be used with othe techniques to create agent workflows.\n",
+ "\n",
+ "If you're ready to explore more complicated agent workflows, check out [this blog](https://developer.nvidia.com/blog/build-an-agentic-rag-pipeline-with-llama-3-1-and-nvidia-nemo-retriever-nims/) on how to improve your RAG pipeline with agents with Llama 3.1 and NVIDIA NemMo Retriever NIMs."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/libs/ai-endpoints/docs/chat/nvidia_ai_endpoints.ipynb b/libs/ai-endpoints/docs/chat/nvidia_ai_endpoints.ipynb
index e0eb5f55..3009be7e 100644
--- a/libs/ai-endpoints/docs/chat/nvidia_ai_endpoints.ipynb
+++ b/libs/ai-endpoints/docs/chat/nvidia_ai_endpoints.ipynb
@@ -137,28 +137,6 @@
"llm = ChatNVIDIA(base_url=\"http://localhost:8000/v1\", model=\"meta/llama3-8b-instruct\")"
]
},
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "7d4a4e2e",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/ubuntu/raspawar/langchain-nvidia/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_common.py:583: UserWarning: Default model is set as: meta/llama3-8b-instruct. \n",
- "Set model using model parameter. \n",
- "To get available models use available_models property.\n",
- " UserWarning,\n"
- ]
- }
- ],
- "source": [
- "# OR connect to an embedding NIM running at localhost:8000, with default model(first available model)\n",
- "llm = ChatNVIDIA(base_url=\"http://localhost:8000/v1\")"
- ]
- },
{
"cell_type": "markdown",
"id": "71d37987-d568-4a73-9d2a-8bd86323f8bf",
@@ -466,92 +444,6 @@
"llm.invoke(f'What\\'s in this image?\\n')"
]
},
- {
- "cell_type": "markdown",
- "id": "3e61d868",
- "metadata": {},
- "source": [
- "#### **Advanced Use Case:** Forcing Payload \n",
- "\n",
- "You may notice that some newer models may have strong parameter expectations that the LangChain connector may not support by default. For example, we cannot invoke the [Kosmos](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/ai-foundation/models/kosmos-2) model at the time of this notebook's latest release due to the lack of a streaming argument on the server side: "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "d143e0d6",
- "metadata": {},
- "outputs": [],
- "source": [
- "from langchain_nvidia_ai_endpoints import ChatNVIDIA\n",
- "\n",
- "kosmos = ChatNVIDIA(model=\"microsoft/kosmos-2\")\n",
- "\n",
- "from langchain_core.messages import HumanMessage\n",
- "\n",
- "# kosmos.invoke(\n",
- "# [\n",
- "# HumanMessage(\n",
- "# content=[\n",
- "# {\"type\": \"text\", \"text\": \"Describe this image:\"},\n",
- "# {\"type\": \"image_url\", \"image_url\": {\"url\": image_url}},\n",
- "# ]\n",
- "# )\n",
- "# ]\n",
- "# )\n",
- "\n",
- "# Exception: [422] Unprocessable Entity\n",
- "# body -> stream\n",
- "# Extra inputs are not permitted (type=extra_forbidden)\n",
- "# RequestID: 35538c9a-4b45-4616-8b75-7ef816fccf38"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "1e230b70",
- "metadata": {},
- "source": [
- "For a simple use case like this, we can actually try to force the payload argument of our underlying client by specifying the `payload_fn` function as follows: "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "0925b2b1",
- "metadata": {},
- "outputs": [],
- "source": [
- "def drop_streaming_key(d):\n",
- " \"\"\"Takes in payload dictionary, outputs new payload dictionary\"\"\"\n",
- " if \"stream\" in d:\n",
- " d.pop(\"stream\")\n",
- " return d\n",
- "\n",
- "\n",
- "## Override the payload passthrough. Default is to pass through the payload as is.\n",
- "kosmos = ChatNVIDIA(model=\"microsoft/kosmos-2\")\n",
- "kosmos.client.payload_fn = drop_streaming_key\n",
- "\n",
- "kosmos.invoke(\n",
- " [\n",
- " HumanMessage(\n",
- " content=[\n",
- " {\"type\": \"text\", \"text\": \"Describe this image:\"},\n",
- " {\"type\": \"image_url\", \"image_url\": {\"url\": image_url}},\n",
- " ]\n",
- " )\n",
- " ]\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "fe6e1758",
- "metadata": {},
- "source": [
- "For more advanced or custom use-cases (i.e. supporting the diffusion models), you may be interested in leveraging the `NVEModel` client as a requests backbone. The `NVIDIAEmbeddings` class is a good source of inspiration for this. "
- ]
- },
{
"cell_type": "markdown",
"id": "137662a6",
@@ -559,7 +451,7 @@
"id": "137662a6"
},
"source": [
- "## Example usage within a Conversation Chains"
+ "## Example usage within a RunnableWithMessageHistory"
]
},
{
@@ -569,7 +461,7 @@
"id": "79efa62d"
},
"source": [
- "Like any other integration, ChatNVIDIA is fine to support chat utilities like conversation buffers by default. Below, we show the [LangChain ConversationBufferMemory](https://python.langchain.com/docs/modules/memory/types/buffer) example applied to the `mistralai/mixtral-8x22b-instruct-v0.1` model."
+ "Like any other integration, ChatNVIDIA is fine to support chat utilities like RunnableWithMessageHistory which is analogous to using `ConversationChain`. Below, we show the [LangChain RunnableWithMessageHistory](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html) example applied to the `mistralai/mixtral-8x22b-instruct-v0.1` model."
]
},
{
@@ -591,29 +483,39 @@
},
"outputs": [],
"source": [
- "from langchain.chains import ConversationChain\n",
- "from langchain.memory import ConversationBufferMemory\n",
+ "from langchain_core.chat_history import InMemoryChatMessageHistory\n",
+ "from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"\n",
- "chat = ChatNVIDIA(model=\"mistralai/mixtral-8x22b-instruct-v0.1\", temperature=0.1, max_tokens=100, top_p=1.0)\n",
+ "# store is a dictionary that maps session IDs to their corresponding chat histories.\n",
+ "store = {} # memory is maintained outside the chain\n",
"\n",
- "conversation = ConversationChain(llm=chat, memory=ConversationBufferMemory())"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "f644ff28",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 268
- },
- "id": "f644ff28",
- "outputId": "bae354cc-2118-4e01-ce20-a717ac94d27d"
- },
- "outputs": [],
- "source": [
- "conversation.invoke(\"Hi there!\")[\"response\"]"
+ "\n",
+ "# A function that returns the chat history for a given session ID.\n",
+ "def get_session_history(session_id: str) -> InMemoryChatMessageHistory:\n",
+ " if session_id not in store:\n",
+ " store[session_id] = InMemoryChatMessageHistory()\n",
+ " return store[session_id]\n",
+ "\n",
+ "\n",
+ "chat = ChatNVIDIA(\n",
+ " model=\"mistralai/mixtral-8x22b-instruct-v0.1\",\n",
+ " temperature=0.1,\n",
+ " max_tokens=100,\n",
+ " top_p=1.0,\n",
+ ")\n",
+ "\n",
+ "# Define a RunnableConfig object, with a `configurable` key. session_id determines thread\n",
+ "config = {\"configurable\": {\"session_id\": \"1\"}}\n",
+ "\n",
+ "conversation = RunnableWithMessageHistory(\n",
+ " chat,\n",
+ " get_session_history,\n",
+ ")\n",
+ "\n",
+ "conversation.invoke(\n",
+ " \"Hi I'm Srijan Dubey.\", # input or query\n",
+ " config=config,\n",
+ ")"
]
},
{
@@ -630,9 +532,10 @@
},
"outputs": [],
"source": [
- "conversation.invoke(\"I'm doing well! Just having a conversation with an AI.\")[\n",
- " \"response\"\n",
- "]"
+ "conversation.invoke(\n",
+ " \"I'm doing well! Just having a conversation with an AI.\",\n",
+ " config=config,\n",
+ ")"
]
},
{
@@ -649,9 +552,79 @@
},
"outputs": [],
"source": [
- "conversation.invoke(\"Tell me about yourself.\")[\n",
- " \"response\"\n",
- "]\n"
+ "conversation.invoke(\n",
+ " \"Tell me about yourself.\",\n",
+ " config=config,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f3cbbba0",
+ "metadata": {},
+ "source": [
+ "## Tool calling\n",
+ "\n",
+ "Starting in v0.2, `ChatNVIDIA` supports [bind_tools](https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html#langchain_core.language_models.chat_models.BaseChatModel.bind_tools).\n",
+ "\n",
+ "`ChatNVIDIA` provides integration with the variety of models on [build.nvidia.com](https://build.nvidia.com) as well as local NIMs. Not all these models are trained for tool calling. Be sure to select a model that does have tool calling for your experimention and applications."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6f7b535e",
+ "metadata": {},
+ "source": [
+ "You can get a list of models that are known to support tool calling with,"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e36c8911",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tool_models = [model for model in ChatNVIDIA.get_available_models() if model.supports_tools]\n",
+ "tool_models"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b01d75a7",
+ "metadata": {},
+ "source": [
+ "With a tool capable model,"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "bd54f174",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from langchain_core.pydantic_v1 import Field\n",
+ "from langchain_core.tools import tool\n",
+ "\n",
+ "@tool\n",
+ "def get_current_weather(\n",
+ " location: str = Field(..., description=\"The location to get the weather for.\")\n",
+ "):\n",
+ " \"\"\"Get the current weather for a location.\"\"\"\n",
+ " ...\n",
+ "\n",
+ "llm = ChatNVIDIA(model=tool_models[0].id).bind_tools(tools=[get_current_weather])\n",
+ "response = llm.invoke(\"What is the weather in Boston?\")\n",
+ "response.tool_calls"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e08df68c",
+ "metadata": {},
+ "source": [
+ "See [How to use chat models to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling/) for additional examples."
]
}
],
diff --git a/libs/ai-endpoints/docs/providers/nvidia.mdx b/libs/ai-endpoints/docs/providers/nvidia.mdx
index 70f1123c..05975156 100644
--- a/libs/ai-endpoints/docs/providers/nvidia.mdx
+++ b/libs/ai-endpoints/docs/providers/nvidia.mdx
@@ -78,5 +78,5 @@ A selection of NVIDIA AI Foundation models are supported directly in LangChain w
The active models which are supported can be found [in API Catalog](https://build.nvidia.com/).
**The following may be useful examples to help you get started:**
-- **[`ChatNVIDIA` Model](/docs/integrations/chat/nvidia_ai_endpoints).**
-- **[`NVIDIAEmbeddings` Model for RAG Workflows](/docs/integrations/text_embedding/nvidia_ai_endpoints).**
+- **[`ChatNVIDIA` Model](https://github.com/langchain-ai/langchain/blob/master/docs/docs/integrations/chat/nvidia_ai_endpoints.ipynb).**
+- **[`NVIDIAEmbeddings` Model for retrieval in RAG Workflows](https://github.com/langchain-ai/langchain/blob/master/docs/docs/integrations/text_embedding/nvidia_ai_endpoints.ipynb).**
\ No newline at end of file
diff --git a/libs/ai-endpoints/docs/retrievers/nvidia_rerank.ipynb b/libs/ai-endpoints/docs/retrievers/nvidia_rerank.ipynb
index 3164e8e0..207d167a 100644
--- a/libs/ai-endpoints/docs/retrievers/nvidia_rerank.ipynb
+++ b/libs/ai-endpoints/docs/retrievers/nvidia_rerank.ipynb
@@ -574,7 +574,19 @@
"source": [
"#### Combine and rank documents\n",
"\n",
- "Let's combine the BM25 as well as semantic search results. The resulting `docs` will be ordered by their relevance to the query by the reranking NIM."
+ "Let's combine the BM25 as well as semantic search results. The resulting `docs` will be ordered by their relevance to the query by the reranking NIM.\n",
+ "\n",
+ "#### Note on truncation\n",
+ "\n",
+ "Reranking models typically have a fixed context window that determines the maximum number of input tokens that can be processed. This limit could be a hard limit, equal to the model's maximum input token length, or an effective limit, beyond which the accuracy of the ranking decreases.\n",
+ "\n",
+ "Since models operate on tokens and applications usually work with text, it can be challenging for an application to ensure that its input stays within the model's token limits. By default, an exception is thrown if the input is too large.\n",
+ "\n",
+ "To assist with this, NVIDIA's NIMs (API Catalog or local) provide a `truncate` parameter that truncates the input on the server side if it's too large.\n",
+ "\n",
+ "The `truncate` parameter has three options:\n",
+ " - \"NONE\": The default option. An exception is thrown if the input is too large.\n",
+ " - \"END\": The server truncates the input from the end (right), discarding tokens as necessary."
]
},
{
@@ -598,7 +610,7 @@
}
],
"source": [
- "ranker = NVIDIARerank()\n",
+ "ranker = NVIDIARerank(truncate=\"END\")\n",
"\n",
"all_docs = bm25_docs + sem_docs\n",
"\n",
diff --git a/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_common.py b/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_common.py
index c2715c5f..c3197600 100644
--- a/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_common.py
+++ b/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_common.py
@@ -367,13 +367,17 @@ def _aggregate_msgs(self, msg_list: Sequence[dict]) -> Tuple[dict, bool]:
content_buffer: Dict[str, Any] = dict()
content_holder: Dict[Any, Any] = dict()
usage_holder: Dict[Any, Any] = dict() ####
+ finish_reason_holder: Optional[str] = None
is_stopped = False
for msg in msg_list:
usage_holder = msg.get("usage", {}) ####
if "choices" in msg:
## Tease out ['choices'][0]...['delta'/'message']
msg = msg.get("choices", [{}])[0]
- is_stopped = msg.get("finish_reason", "") == "stop"
+ # todo: this meeds to be fixed, the fact we only
+ # use the first choice breaks the interface
+ finish_reason_holder = msg.get("finish_reason", None)
+ is_stopped = finish_reason_holder == "stop"
msg = msg.get("delta", msg.get("message", msg.get("text", "")))
if not isinstance(msg, dict):
msg = {"content": msg}
@@ -391,6 +395,8 @@ def _aggregate_msgs(self, msg_list: Sequence[dict]) -> Tuple[dict, bool]:
content_holder = {**content_holder, **content_buffer}
if usage_holder:
content_holder.update(token_usage=usage_holder) ####
+ if finish_reason_holder:
+ content_holder.update(finish_reason=finish_reason_holder)
return content_holder, is_stopped
####################################################################################
diff --git a/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_statics.py b/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_statics.py
index fee823c1..b72f1236 100644
--- a/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_statics.py
+++ b/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_statics.py
@@ -1,3 +1,4 @@
+import os
import warnings
from typing import Literal, Optional
@@ -13,6 +14,7 @@ class Model(BaseModel):
client: client name, e.g. ChatNVIDIA, NVIDIAEmbeddings, NVIDIARerank
endpoint: custom endpoint for the model
aliases: list of aliases for the model
+ supports_tools: whether the model supports tool calling
All aliases are deprecated and will trigger a warning when used.
"""
@@ -25,6 +27,7 @@ class Model(BaseModel):
client: Optional[Literal["ChatNVIDIA", "NVIDIAEmbeddings", "NVIDIARerank"]] = None
endpoint: Optional[str] = None
aliases: Optional[list] = None
+ supports_tools: Optional[bool] = False
base_model: Optional[str] = None
def __hash__(self) -> int:
@@ -277,6 +280,34 @@ def validate_client(cls, client: str, values: dict) -> str:
client="ChatNVIDIA",
aliases=["ai-deepseek-coder-6_7b-instruct"],
),
+ "nv-mistralai/mistral-nemo-12b-instruct": Model(
+ id="nv-mistralai/mistral-nemo-12b-instruct",
+ model_type="chat",
+ client="ChatNVIDIA",
+ ),
+ "meta/llama-3.1-8b-instruct": Model(
+ id="meta/llama-3.1-8b-instruct",
+ model_type="chat",
+ client="ChatNVIDIA",
+ supports_tools=True,
+ ),
+ "meta/llama-3.1-70b-instruct": Model(
+ id="meta/llama-3.1-70b-instruct",
+ model_type="chat",
+ client="ChatNVIDIA",
+ supports_tools=True,
+ ),
+ "meta/llama-3.1-405b-instruct": Model(
+ id="meta/llama-3.1-405b-instruct",
+ model_type="chat",
+ client="ChatNVIDIA",
+ supports_tools=True,
+ ),
+ "nvidia/usdcode-llama3-70b-instruct": Model(
+ id="nvidia/usdcode-llama3-70b-instruct",
+ model_type="chat",
+ client="ChatNVIDIA",
+ ),
}
QA_MODEL_TABLE = {
@@ -381,6 +412,21 @@ def validate_client(cls, client: str, values: dict) -> str:
client="NVIDIAEmbeddings",
aliases=["ai-nv-embed-v1"],
),
+ "nvidia/nv-embedqa-mistral-7b-v2": Model(
+ id="nvidia/nv-embedqa-mistral-7b-v2",
+ model_type="embedding",
+ client="NVIDIAEmbeddings",
+ ),
+ "nvidia/nv-embedqa-e5-v5": Model(
+ id="nvidia/nv-embedqa-e5-v5",
+ model_type="embedding",
+ client="NVIDIAEmbeddings",
+ ),
+ "baai/bge-m3": Model(
+ id="baai/bge-m3",
+ model_type="embedding",
+ client="NVIDIAEmbeddings",
+ ),
}
RANKING_MODEL_TABLE = {
@@ -391,6 +437,12 @@ def validate_client(cls, client: str, values: dict) -> str:
endpoint="https://ai.api.nvidia.com/v1/retrieval/nvidia/reranking",
aliases=["ai-rerank-qa-mistral-4b"],
),
+ "nvidia/nv-rerankqa-mistral-4b-v3": Model(
+ id="nvidia/nv-rerankqa-mistral-4b-v3",
+ model_type="ranking",
+ client="NVIDIARerank",
+ endpoint="https://ai.api.nvidia.com/v1/retrieval/nvidia/nv-rerankqa-mistral-4b-v3/reranking",
+ ),
}
# COMPLETION_MODEL_TABLE = {
@@ -402,6 +454,18 @@ def validate_client(cls, client: str, values: dict) -> str:
# ),
# }
+
+OPENAI_MODEL_TABLE = {
+ "gpt-3.5-turbo": Model(
+ id="gpt-3.5-turbo",
+ model_type="chat",
+ client="ChatNVIDIA",
+ endpoint="https://api.openai.com/v1/chat/completions",
+ supports_tools=True,
+ ),
+}
+
+
MODEL_TABLE = {
**CHAT_MODEL_TABLE,
**QA_MODEL_TABLE,
@@ -410,6 +474,9 @@ def validate_client(cls, client: str, values: dict) -> str:
**RANKING_MODEL_TABLE,
}
+if "_INCLUDE_OPENAI" in os.environ:
+ MODEL_TABLE.update(OPENAI_MODEL_TABLE)
+
def register_model(model: Model) -> None:
"""
diff --git a/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_utils.py b/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_utils.py
new file mode 100644
index 00000000..7280a3db
--- /dev/null
+++ b/libs/ai-endpoints/langchain_nvidia_ai_endpoints/_utils.py
@@ -0,0 +1,63 @@
+from __future__ import annotations
+
+from typing import (
+ Any,
+ Dict,
+)
+
+from langchain_core.messages import (
+ AIMessage,
+ BaseMessage,
+ ChatMessage,
+ FunctionMessage,
+ HumanMessage,
+ SystemMessage,
+ ToolMessage,
+)
+
+
+def convert_message_to_dict(message: BaseMessage) -> dict:
+ """Convert a LangChain message to a dictionary.
+
+ Args:
+ message: The LangChain message.
+
+ Returns:
+ The dictionary.
+ """
+ message_dict: Dict[str, Any]
+ if isinstance(message, ChatMessage):
+ message_dict = {"role": message.role, "content": message.content}
+ elif isinstance(message, HumanMessage):
+ message_dict = {"role": "user", "content": message.content}
+ elif isinstance(message, AIMessage):
+ message_dict = {"role": "assistant", "content": message.content}
+ if "function_call" in message.additional_kwargs:
+ message_dict["function_call"] = message.additional_kwargs["function_call"]
+ # If function call only, content is None not empty string
+ if message_dict["content"] == "":
+ message_dict["content"] = None
+ if "tool_calls" in message.additional_kwargs:
+ message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
+ # If tool calls only, content is None not empty string
+ if message_dict["content"] == "":
+ message_dict["content"] = None
+ elif isinstance(message, SystemMessage):
+ message_dict = {"role": "system", "content": message.content}
+ elif isinstance(message, FunctionMessage):
+ message_dict = {
+ "role": "function",
+ "content": message.content,
+ "name": message.name,
+ }
+ elif isinstance(message, ToolMessage):
+ message_dict = {
+ "role": "tool",
+ "content": message.content,
+ "tool_call_id": message.tool_call_id,
+ }
+ else:
+ raise TypeError(f"Got unknown type {message}")
+ if "name" in message.additional_kwargs:
+ message_dict["name"] = message.additional_kwargs["name"]
+ return message_dict
diff --git a/libs/ai-endpoints/langchain_nvidia_ai_endpoints/chat_models.py b/libs/ai-endpoints/langchain_nvidia_ai_endpoints/chat_models.py
index ad87fffa..48a448d9 100644
--- a/libs/ai-endpoints/langchain_nvidia_ai_endpoints/chat_models.py
+++ b/libs/ai-endpoints/langchain_nvidia_ai_endpoints/chat_models.py
@@ -8,6 +8,7 @@
import os
import sys
import urllib.parse
+import warnings
from typing import (
Any,
Callable,
@@ -15,7 +16,6 @@
Iterator,
List,
Literal,
- Mapping,
Optional,
Sequence,
Type,
@@ -29,9 +29,9 @@
)
from langchain_core.language_models import BaseChatModel, LanguageModelInput
from langchain_core.messages import (
+ AIMessage,
+ AIMessageChunk,
BaseMessage,
- ChatMessage,
- ChatMessageChunk,
)
from langchain_core.outputs import (
ChatGeneration,
@@ -41,9 +41,11 @@
from langchain_core.pydantic_v1 import BaseModel, Field, PrivateAttr
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
+from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_nvidia_ai_endpoints._common import _NVIDIAClient
from langchain_nvidia_ai_endpoints._statics import Model
+from langchain_nvidia_ai_endpoints._utils import convert_message_to_dict
_CallbackManager = Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
_DictOrPydanticClass = Union[Dict[str, Any], Type[BaseModel]]
@@ -116,6 +118,53 @@ def _url_to_b64_string(image_source: str) -> str:
raise ValueError(f"Unable to process the provided image source: {e}")
+def _nv_vlm_adjust_input(message_dict: Dict[str, Any]) -> Dict[str, Any]:
+ """
+ The NVIDIA VLM API input message.content:
+ {
+ "role": "user",
+ "content": [
+ ...,
+ {
+ "type": "image_url",
+ "image_url": "{data}"
+ },
+ ...
+ ]
+ }
+ where OpenAI VLM API input message.content:
+ {
+ "role": "user",
+ "content": [
+ ...,
+ {
+ "type": "image_url",
+ "image_url": {
+ "url": "{url | data}"
+ }
+ },
+ ...
+ ]
+ }
+
+ This function converts the OpenAI VLM API input message to
+ NVIDIA VLM API input message, in place.
+
+ In the process, it accepts a url or file and converts them to
+ data urls.
+ """
+ if content := message_dict.get("content"):
+ if isinstance(content, list):
+ for part in content:
+ if isinstance(part, dict) and "image_url" in part:
+ if (
+ isinstance(part["image_url"], dict)
+ and "url" in part["image_url"]
+ ):
+ part["image_url"] = _url_to_b64_string(part["image_url"]["url"])
+ return message_dict
+
+
class ChatNVIDIA(BaseChatModel):
"""NVIDIA chat model.
@@ -130,7 +179,7 @@ class ChatNVIDIA(BaseChatModel):
"""
_client: _NVIDIAClient = PrivateAttr(_NVIDIAClient)
- _default_model: str = "mistralai/mixtral-8x7b-instruct-v0.1"
+ _default_model: str = "meta/llama3-8b-instruct"
base_url: str = Field(
"https://integrate.api.nvidia.com/v1",
description="Base url for model listing an invocation",
@@ -210,13 +259,19 @@ def _generate(
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
- inputs = self._custom_preprocess(messages)
+ inputs = [
+ _nv_vlm_adjust_input(message)
+ for message in [convert_message_to_dict(message) for message in messages]
+ ]
payload = self._get_payload(inputs=inputs, stop=stop, stream=False, **kwargs)
response = self._client.client.get_req(payload=payload)
responses, _ = self._client.client.postprocess(response)
self._set_callback_out(responses, run_manager)
- message = ChatMessage(**self._custom_postprocess(responses))
- generation = ChatGeneration(message=message)
+ parsed_response = self._custom_postprocess(responses, streaming=False)
+ # for pre 0.2 compatibility w/ ChatMessage
+ # ChatMessage had a role property that was not present in AIMessage
+ parsed_response.update({"role": "assistant"})
+ generation = ChatGeneration(message=AIMessage(**parsed_response))
return ChatResult(generations=[generation], llm_output=responses)
def _stream(
@@ -227,13 +282,21 @@ def _stream(
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""Allows streaming to model!"""
- inputs = self._custom_preprocess(messages)
+ inputs = [
+ _nv_vlm_adjust_input(message)
+ for message in [convert_message_to_dict(message) for message in messages]
+ ]
payload = self._get_payload(inputs=inputs, stop=stop, stream=True, **kwargs)
for response in self._client.client.get_req_stream(payload=payload):
self._set_callback_out(response, run_manager)
- chunk = ChatGenerationChunk(
- message=ChatMessageChunk(**self._custom_postprocess(response))
- )
+ parsed_response = self._custom_postprocess(response, streaming=True)
+ # for pre 0.2 compatibility w/ ChatMessageChunk
+ # ChatMessageChunk had a role property that was not
+ # present in AIMessageChunk
+ # unfortunately, AIMessageChunk does not have extensible propery
+ # parsed_response.update({"role": "assistant"})
+ message = AIMessageChunk(**parsed_response)
+ chunk = ChatGenerationChunk(message=message)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
@@ -249,55 +312,9 @@ def _set_callback_out(
if hasattr(cb, "llm_output"):
cb.llm_output = result
- def _custom_preprocess( # todo: remove
- self, msg_list: Sequence[BaseMessage]
- ) -> List[Dict[str, str]]:
- def _preprocess_msg(msg: BaseMessage) -> Dict[str, str]:
- if isinstance(msg, BaseMessage):
- role_convert = {"ai": "assistant", "human": "user"}
- if isinstance(msg, ChatMessage):
- role = msg.role
- else:
- role = msg.type
- role = role_convert.get(role, role)
- content = self._process_content(msg.content)
- return {"role": role, "content": content}
- raise ValueError(f"Invalid message: {repr(msg)} of type {type(msg)}")
-
- return [_preprocess_msg(m) for m in msg_list]
-
- def _process_content(self, content: Union[str, List[Union[dict, str]]]) -> str:
- if isinstance(content, str):
- return content
- string_array: list = []
-
- for part in content:
- if isinstance(part, str):
- string_array.append(part)
- elif isinstance(part, Mapping):
- # OpenAI Format
- if "type" in part:
- if part["type"] == "text":
- string_array.append(str(part["text"]))
- elif part["type"] == "image_url":
- img_url = part["image_url"]
- if isinstance(img_url, dict):
- if "url" not in img_url:
- raise ValueError(
- f"Unrecognized message image format: {img_url}"
- )
- img_url = img_url["url"]
- b64_string = _url_to_b64_string(img_url)
- string_array.append(f'')
- else:
- raise ValueError(
- f"Unrecognized message part type: {part['type']}"
- )
- else:
- raise ValueError(f"Unrecognized message part format: {part}")
- return "".join(string_array)
-
- def _custom_postprocess(self, msg: dict) -> dict: # todo: remove
+ def _custom_postprocess(
+ self, msg: dict, streaming: bool = False
+ ) -> dict: # todo: remove
kw_left = msg.copy()
out_dict = {
"role": kw_left.pop("role", "assistant") or "assistant",
@@ -307,10 +324,44 @@ def _custom_postprocess(self, msg: dict) -> dict: # todo: remove
"additional_kwargs": {},
"response_metadata": {},
}
- for k in list(kw_left.keys()):
- if "tool" in k:
- out_dict["additional_kwargs"][k] = kw_left.pop(k)
- out_dict["response_metadata"] = kw_left
+ # "tool_calls" is set for invoke and stream responses
+ if tool_calls := kw_left.pop("tool_calls", None):
+ assert isinstance(
+ tool_calls, list
+ ), "invalid response from server: tool_calls must be a list"
+ # todo: break this into post-processing for invoke and stream
+ if not streaming:
+ out_dict["additional_kwargs"]["tool_calls"] = tool_calls
+ elif streaming:
+ out_dict["tool_call_chunks"] = []
+ for tool_call in tool_calls:
+ # todo: the nim api does not return the function index
+ # for tool calls in stream responses. this is
+ # an issue that needs to be resolved server-side.
+ # the only reason we can skip this for now
+ # is because the nim endpoint returns only full
+ # tool calls, no deltas.
+ # assert "index" in tool_call, (
+ # "invalid response from server: "
+ # "tool_call must have an 'index' key"
+ # )
+ assert "function" in tool_call, (
+ "invalid response from server: "
+ "tool_call must have a 'function' key"
+ )
+ out_dict["tool_call_chunks"].append(
+ {
+ "index": tool_call.get("index", None),
+ "id": tool_call.get("id", None),
+ "name": tool_call["function"].get("name", None),
+ "args": tool_call["function"].get("arguments", None),
+ }
+ )
+ # we only create the response_metadata from the last message in a stream.
+ # if we do it for all messages, we'll end up with things like
+ # "model_name" = "mode-xyz" * # messages.
+ if "finish_reason" in kw_left:
+ out_dict["response_metadata"] = kw_left
return out_dict
######################################################################################
@@ -328,7 +379,9 @@ def _get_payload(
messages.append(dict(role="user", content=msg))
elif isinstance(msg, dict):
if msg.get("content", None) is None:
- raise ValueError(f"Message {msg} has no content")
+ # content=None is valid for assistant messages (tool calling)
+ if not msg.get("role") == "assistant":
+ raise ValueError(f"Message {msg} has no content.")
messages.append(msg)
else:
raise ValueError(f"Unknown message received: {msg} of type {type(msg)}")
@@ -366,13 +419,88 @@ def bind_tools(
self,
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
*,
- tool_choice: Optional[Union[dict, str, Literal["auto", "none"], bool]] = None,
+ tool_choice: Optional[
+ Union[dict, str, Literal["auto", "none", "any", "required"], bool]
+ ] = None,
**kwargs: Any,
) -> Runnable[LanguageModelInput, BaseMessage]:
- raise NotImplementedError(
- "Not implemented, awaiting server-side function-recieving API"
- " Consider following open-source LLM agent spec techniques:"
- " https://huggingface.co/blog/open-source-llms-as-agents"
+ """
+ Bind tools to the model.
+
+ Args:
+ tools (list): A list of tools to bind to the model.
+ tool_choice (Optional[Union[dict,
+ str,
+ Literal["auto", "none", "any", "required"],
+ bool]]):
+ Control tool choice.
+ "any" and "required" - force a tool call.
+ "auto" - let the model decide.
+ "none" - force no tool call.
+ string or dict - force a specific tool call.
+ bool - if True, force a tool call; if False, force no tool call.
+ Defaults to passing no value.
+ **kwargs: Additional keyword arguments.
+
+ see https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/#request-forcing-a-tool-call
+ """
+ # check if the model supports tools, warn if it does not
+ known_good = False
+ # todo: we need to store model: Model in this class
+ # instead of model: str (= Model.id)
+ # this should be: if not self.model.supports_tools: warnings.warn...
+ candidates = [
+ model for model in self.available_models if model.id == self.model
+ ]
+ if not candidates: # user must have specified the model themselves
+ known_good = False
+ else:
+ assert len(candidates) == 1, "Multiple models with the same id"
+ known_good = candidates[0].supports_tools is True
+ if not known_good:
+ warnings.warn(
+ f"Model '{self.model}' is not known to support tools. "
+ "Your tool binding may fail at inference time."
+ )
+
+ tool_name = None
+ if isinstance(tool_choice, bool):
+ tool_choice = "required" if tool_choice else "none"
+ elif isinstance(tool_choice, str):
+ # LangChain documents "any" as an option, server API uses "required"
+ if tool_choice == "any":
+ tool_choice = "required"
+ # if a string that's not "auto", "none", or "required"
+ # then it must be a tool name
+ if tool_choice not in ["auto", "none", "required"]:
+ tool_name = tool_choice
+ tool_choice = {
+ "type": "function",
+ "function": {"name": tool_choice},
+ }
+ elif isinstance(tool_choice, dict):
+ # if a dict, it must be a tool choice dict, e.g.
+ # {"type": "function", "function": {"name": "my_tool"}}
+ if "type" not in tool_choice:
+ tool_choice["type"] = "function"
+ if "function" not in tool_choice:
+ raise ValueError("Tool choice dict must have a 'function' key")
+ if "name" not in tool_choice["function"]:
+ raise ValueError("Tool choice function dict must have a 'name' key")
+ tool_name = tool_choice["function"]["name"]
+
+ # check that the specified tool is in the tools list
+ tool_dicts = [convert_to_openai_tool(tool) for tool in tools]
+ if tool_name:
+ if not any(tool["function"]["name"] == tool_name for tool in tool_dicts):
+ raise ValueError(
+ f"Tool choice '{tool_name}' not found in the tools list"
+ )
+
+ return super().bind(
+ tools=tool_dicts,
+ tool_choice=tool_choice,
+ **kwargs,
)
def bind_functions(
@@ -381,11 +509,7 @@ def bind_functions(
function_call: Optional[str] = None,
**kwargs: Any,
) -> Runnable[LanguageModelInput, BaseMessage]:
- raise NotImplementedError(
- "Not implemented, awaiting server-side function-recieving API"
- " Consider following open-source LLM agent spec techniques:"
- " https://huggingface.co/blog/open-source-llms-as-agents"
- )
+ raise NotImplementedError("Not implemented, use `bind_tools` instead.")
def with_structured_output(
self,
diff --git a/libs/ai-endpoints/langchain_nvidia_ai_endpoints/reranking.py b/libs/ai-endpoints/langchain_nvidia_ai_endpoints/reranking.py
index 32d0e5a9..85ce4f73 100644
--- a/libs/ai-endpoints/langchain_nvidia_ai_endpoints/reranking.py
+++ b/libs/ai-endpoints/langchain_nvidia_ai_endpoints/reranking.py
@@ -1,6 +1,6 @@
from __future__ import annotations
-from typing import Any, Generator, List, Optional, Sequence
+from typing import Any, Generator, List, Literal, Optional, Sequence
from langchain_core.callbacks.manager import Callbacks
from langchain_core.documents import Document
@@ -27,7 +27,6 @@ class Config:
_client: _NVIDIAClient = PrivateAttr(_NVIDIAClient)
_default_batch_size: int = 32
- _deprecated_model: str = "ai-rerank-qa-mistral-4b"
_default_model_name: str = "nv-rerank-qa-mistral-4b:1"
base_url: str = Field(
@@ -36,6 +35,13 @@ class Config:
)
top_n: int = Field(5, ge=0, description="The number of documents to return.")
model: Optional[str] = Field(description="The model to use for reranking.")
+ truncate: Optional[Literal["NONE", "END"]] = Field(
+ description=(
+ "Truncate input text if it exceeds the model's maximum token length. "
+ "Default is model dependent and is likely to raise error if an "
+ "input is too long."
+ ),
+ )
max_batch_size: int = Field(
_default_batch_size, ge=1, description="The maximum batch size."
)
@@ -54,7 +60,9 @@ def __init__(self, **kwargs: Any):
nvidia_api_key (str): The API key to use for connecting to the hosted NIM.
api_key (str): Alternative to nvidia_api_key.
base_url (str): The base URL of the NIM to connect to.
- Format for base URL is http://host:port
+ truncate (str): "NONE", "END", truncate input text if it exceeds
+ the model's context length. Default is model dependent and
+ is likely to raise an error if an input is too long.
API Key:
- The recommended way to provide the API key is through the `NVIDIA_API_KEY`
@@ -91,13 +99,14 @@ def get_available_models(
# todo: batching when len(documents) > endpoint's max batch size
def _rank(self, documents: List[str], query: str) -> List[Ranking]:
- response = self._client.client.get_req(
- payload={
- "model": "nv-rerank-qa-mistral-4b:1",
- "query": {"text": query},
- "passages": [{"text": passage} for passage in documents],
- },
- )
+ payload = {
+ "model": self.model,
+ "query": {"text": query},
+ "passages": [{"text": passage} for passage in documents],
+ }
+ if self.truncate:
+ payload["truncate"] = self.truncate
+ response = self._client.client.get_req(payload=payload)
if response.status_code != 200:
response.raise_for_status()
# todo: handle errors
@@ -136,6 +145,9 @@ def batch(ls: list, size: int) -> Generator[List[Document], None, None]:
query=query, documents=[d.page_content for d in doc_batch]
)
for ranking in rankings:
+ assert (
+ 0 <= ranking.index < len(doc_batch)
+ ), "invalid response from server: index out of range"
doc = doc_batch[ranking.index]
doc.metadata["relevance_score"] = ranking.logit
results.append(doc)
diff --git a/libs/ai-endpoints/poetry.lock b/libs/ai-endpoints/poetry.lock
index a4464a70..1a4176d7 100644
--- a/libs/ai-endpoints/poetry.lock
+++ b/libs/ai-endpoints/poetry.lock
@@ -1,4 +1,4 @@
-# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand.
+# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand.
[[package]]
name = "aiohttp"
@@ -112,13 +112,13 @@ frozenlist = ">=1.1.0"
[[package]]
name = "annotated-types"
-version = "0.6.0"
+version = "0.7.0"
description = "Reusable constraint types to use with typing.Annotated"
optional = false
python-versions = ">=3.8"
files = [
- {file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"},
- {file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"},
+ {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"},
+ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"},
]
[package.dependencies]
@@ -156,13 +156,13 @@ tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "p
[[package]]
name = "certifi"
-version = "2024.2.2"
+version = "2024.7.4"
description = "Python package for providing Mozilla's CA Bundle."
optional = false
python-versions = ">=3.6"
files = [
- {file = "certifi-2024.2.2-py3-none-any.whl", hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1"},
- {file = "certifi-2024.2.2.tar.gz", hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f"},
+ {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"},
+ {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"},
]
[[package]]
@@ -266,13 +266,13 @@ files = [
[[package]]
name = "codespell"
-version = "2.2.6"
+version = "2.3.0"
description = "Codespell"
optional = false
python-versions = ">=3.8"
files = [
- {file = "codespell-2.2.6-py3-none-any.whl", hash = "sha256:9ee9a3e5df0990604013ac2a9f22fa8e57669c827124a2e961fe8a1da4cacc07"},
- {file = "codespell-2.2.6.tar.gz", hash = "sha256:a8c65d8eb3faa03deabab6b3bbe798bea72e1799c7e9e955d57eca4096abcff9"},
+ {file = "codespell-2.3.0-py3-none-any.whl", hash = "sha256:a9c7cef2501c9cfede2110fd6d4e5e62296920efe9abfb84648df866e47f58d1"},
+ {file = "codespell-2.3.0.tar.gz", hash = "sha256:360c7d10f75e65f67bad720af7007e1060a5d395670ec11a7ed1fed9dd17471f"},
]
[package.extras]
@@ -294,13 +294,13 @@ files = [
[[package]]
name = "exceptiongroup"
-version = "1.2.1"
+version = "1.2.2"
description = "Backport of PEP 654 (exception groups)"
optional = false
python-versions = ">=3.7"
files = [
- {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"},
- {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"},
+ {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"},
+ {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"},
]
[package.extras]
@@ -308,13 +308,13 @@ test = ["pytest (>=6)"]
[[package]]
name = "faker"
-version = "24.11.0"
+version = "24.14.1"
description = "Faker is a Python package that generates fake data for you."
optional = false
python-versions = ">=3.8"
files = [
- {file = "Faker-24.11.0-py3-none-any.whl", hash = "sha256:adb98e771073a06bdc5d2d6710d8af07ac5da64c8dc2ae3b17bb32319e66fd82"},
- {file = "Faker-24.11.0.tar.gz", hash = "sha256:34b947581c2bced340c39b35f89dbfac4f356932cfff8fe893bde854903f0e6e"},
+ {file = "Faker-24.14.1-py3-none-any.whl", hash = "sha256:a5edba3aa17a1d689c8907e5b0cd1653079c2466a4807f083aa7b5f80a00225d"},
+ {file = "Faker-24.14.1.tar.gz", hash = "sha256:380a3697e696ae4fcf50a93a3d9e0286fab7dfbf05a9caa4421fa4727c6b1e89"},
]
[package.dependencies]
@@ -323,13 +323,13 @@ typing-extensions = {version = ">=3.10.0.1", markers = "python_version <= \"3.8\
[[package]]
name = "freezegun"
-version = "1.5.0"
+version = "1.5.1"
description = "Let your Python tests travel through time"
optional = false
python-versions = ">=3.7"
files = [
- {file = "freezegun-1.5.0-py3-none-any.whl", hash = "sha256:ec3f4ba030e34eb6cf7e1e257308aee2c60c3d038ff35996d7475760c9ff3719"},
- {file = "freezegun-1.5.0.tar.gz", hash = "sha256:200a64359b363aa3653d8aac289584078386c7c3da77339d257e46a01fb5c77c"},
+ {file = "freezegun-1.5.1-py3-none-any.whl", hash = "sha256:bf111d7138a8abe55ab48a71755673dbaa4ab87f4cff5634a4442dfec34c15f1"},
+ {file = "freezegun-1.5.1.tar.gz", hash = "sha256:b29dedfcda6d5e8e083ce71b2b542753ad48cfec44037b3fc79702e2980a89e9"},
]
[package.dependencies]
@@ -459,18 +459,18 @@ jsonpointer = ">=1.9"
[[package]]
name = "jsonpointer"
-version = "2.4"
+version = "3.0.0"
description = "Identify specific nodes in a JSON document (RFC 6901)"
optional = false
-python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*"
+python-versions = ">=3.7"
files = [
- {file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"},
- {file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"},
+ {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"},
+ {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"},
]
[[package]]
name = "langchain-core"
-version = "0.2.0rc1"
+version = "0.2.23"
description = "Building applications with LLMs through composability"
optional = false
python-versions = ">=3.8.1,<4.0"
@@ -479,36 +479,39 @@ develop = false
[package.dependencies]
jsonpatch = "^1.33"
-langsmith = "^0.1.0"
-packaging = "^23.2"
-pydantic = ">=1,<3"
+langsmith = "^0.1.75"
+packaging = ">=23.2,<25"
+pydantic = [
+ {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""},
+ {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
+]
PyYAML = ">=5.3"
-tenacity = "^8.1.0"
-
-[package.extras]
-extended-testing = ["jinja2 (>=3,<4)"]
+tenacity = "^8.1.0,!=8.4.0"
[package.source]
type = "git"
url = "https://github.com/langchain-ai/langchain.git"
reference = "HEAD"
-resolved_reference = "cd1879f5e75fc9e6a8c04ac839909e0d6f2fb541"
+resolved_reference = "b55f6105c6ddb885256a9af062f75048539ca952"
subdirectory = "libs/core"
[[package]]
name = "langsmith"
-version = "0.1.50"
+version = "0.1.93"
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
optional = false
python-versions = "<4.0,>=3.8.1"
files = [
- {file = "langsmith-0.1.50-py3-none-any.whl", hash = "sha256:a81e9809fcaa277bfb314d729e58116554f186d1478fcfdf553b1c2ccce54b85"},
- {file = "langsmith-0.1.50.tar.gz", hash = "sha256:9fd22df8c689c044058536ea5af66f5302067e7551b60d7a335fede8d479572b"},
+ {file = "langsmith-0.1.93-py3-none-any.whl", hash = "sha256:811210b9d5f108f36431bd7b997eb9476a9ecf5a2abd7ddbb606c1cdcf0f43ce"},
+ {file = "langsmith-0.1.93.tar.gz", hash = "sha256:285b6ad3a54f50fa8eb97b5f600acc57d0e37e139dd8cf2111a117d0435ba9b4"},
]
[package.dependencies]
orjson = ">=3.9.14,<4.0.0"
-pydantic = ">=1,<3"
+pydantic = [
+ {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""},
+ {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
+]
requests = ">=2,<3"
[[package]]
@@ -673,155 +676,166 @@ files = [
[[package]]
name = "orjson"
-version = "3.10.1"
+version = "3.10.6"
description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy"
optional = false
python-versions = ">=3.8"
files = [
- {file = "orjson-3.10.1-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:8ec2fc456d53ea4a47768f622bb709be68acd455b0c6be57e91462259741c4f3"},
- {file = "orjson-3.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e900863691d327758be14e2a491931605bd0aded3a21beb6ce133889830b659"},
- {file = "orjson-3.10.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ab6ecbd6fe57785ebc86ee49e183f37d45f91b46fc601380c67c5c5e9c0014a2"},
- {file = "orjson-3.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8af7c68b01b876335cccfb4eee0beef2b5b6eae1945d46a09a7c24c9faac7a77"},
- {file = "orjson-3.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:915abfb2e528677b488a06eba173e9d7706a20fdfe9cdb15890b74ef9791b85e"},
- {file = "orjson-3.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe3fd4a36eff9c63d25503b439531d21828da9def0059c4f472e3845a081aa0b"},
- {file = "orjson-3.10.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d229564e72cfc062e6481a91977a5165c5a0fdce11ddc19ced8471847a67c517"},
- {file = "orjson-3.10.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:9e00495b18304173ac843b5c5fbea7b6f7968564d0d49bef06bfaeca4b656f4e"},
- {file = "orjson-3.10.1-cp310-none-win32.whl", hash = "sha256:fd78ec55179545c108174ba19c1795ced548d6cac4d80d014163033c047ca4ea"},
- {file = "orjson-3.10.1-cp310-none-win_amd64.whl", hash = "sha256:50ca42b40d5a442a9e22eece8cf42ba3d7cd4cd0f2f20184b4d7682894f05eec"},
- {file = "orjson-3.10.1-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:b345a3d6953628df2f42502297f6c1e1b475cfbf6268013c94c5ac80e8abc04c"},
- {file = "orjson-3.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:caa7395ef51af4190d2c70a364e2f42138e0e5fcb4bc08bc9b76997659b27dab"},
- {file = "orjson-3.10.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b01d701decd75ae092e5f36f7b88a1e7a1d3bb7c9b9d7694de850fb155578d5a"},
- {file = "orjson-3.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b5028981ba393f443d8fed9049211b979cadc9d0afecf162832f5a5b152c6297"},
- {file = "orjson-3.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:31ff6a222ea362b87bf21ff619598a4dc1106aaafaea32b1c4876d692891ec27"},
- {file = "orjson-3.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e852a83d7803d3406135fb7a57cf0c1e4a3e73bac80ec621bd32f01c653849c5"},
- {file = "orjson-3.10.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2567bc928ed3c3fcd90998009e8835de7c7dc59aabcf764b8374d36044864f3b"},
- {file = "orjson-3.10.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4ce98cac60b7bb56457bdd2ed7f0d5d7f242d291fdc0ca566c83fa721b52e92d"},
- {file = "orjson-3.10.1-cp311-none-win32.whl", hash = "sha256:813905e111318acb356bb8029014c77b4c647f8b03f314e7b475bd9ce6d1a8ce"},
- {file = "orjson-3.10.1-cp311-none-win_amd64.whl", hash = "sha256:03a3ca0b3ed52bed1a869163a4284e8a7b0be6a0359d521e467cdef7e8e8a3ee"},
- {file = "orjson-3.10.1-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:f02c06cee680b1b3a8727ec26c36f4b3c0c9e2b26339d64471034d16f74f4ef5"},
- {file = "orjson-3.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1aa2f127ac546e123283e437cc90b5ecce754a22306c7700b11035dad4ccf85"},
- {file = "orjson-3.10.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2cf29b4b74f585225196944dffdebd549ad2af6da9e80db7115984103fb18a96"},
- {file = "orjson-3.10.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a1b130c20b116f413caf6059c651ad32215c28500dce9cd029a334a2d84aa66f"},
- {file = "orjson-3.10.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d31f9a709e6114492136e87c7c6da5e21dfedebefa03af85f3ad72656c493ae9"},
- {file = "orjson-3.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d1d169461726f271ab31633cf0e7e7353417e16fb69256a4f8ecb3246a78d6e"},
- {file = "orjson-3.10.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:57c294d73825c6b7f30d11c9e5900cfec9a814893af7f14efbe06b8d0f25fba9"},
- {file = "orjson-3.10.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d7f11dbacfa9265ec76b4019efffabaabba7a7ebf14078f6b4df9b51c3c9a8ea"},
- {file = "orjson-3.10.1-cp312-none-win32.whl", hash = "sha256:d89e5ed68593226c31c76ab4de3e0d35c760bfd3fbf0a74c4b2be1383a1bf123"},
- {file = "orjson-3.10.1-cp312-none-win_amd64.whl", hash = "sha256:aa76c4fe147fd162107ce1692c39f7189180cfd3a27cfbc2ab5643422812da8e"},
- {file = "orjson-3.10.1-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:a2c6a85c92d0e494c1ae117befc93cf8e7bca2075f7fe52e32698da650b2c6d1"},
- {file = "orjson-3.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9813f43da955197d36a7365eb99bed42b83680801729ab2487fef305b9ced866"},
- {file = "orjson-3.10.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ec917b768e2b34b7084cb6c68941f6de5812cc26c6f1a9fecb728e36a3deb9e8"},
- {file = "orjson-3.10.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5252146b3172d75c8a6d27ebca59c9ee066ffc5a277050ccec24821e68742fdf"},
- {file = "orjson-3.10.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:536429bb02791a199d976118b95014ad66f74c58b7644d21061c54ad284e00f4"},
- {file = "orjson-3.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7dfed3c3e9b9199fb9c3355b9c7e4649b65f639e50ddf50efdf86b45c6de04b5"},
- {file = "orjson-3.10.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2b230ec35f188f003f5b543644ae486b2998f6afa74ee3a98fc8ed2e45960afc"},
- {file = "orjson-3.10.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:01234249ba19c6ab1eb0b8be89f13ea21218b2d72d496ef085cfd37e1bae9dd8"},
- {file = "orjson-3.10.1-cp38-none-win32.whl", hash = "sha256:8a884fbf81a3cc22d264ba780920d4885442144e6acaa1411921260416ac9a54"},
- {file = "orjson-3.10.1-cp38-none-win_amd64.whl", hash = "sha256:dab5f802d52b182163f307d2b1f727d30b1762e1923c64c9c56dd853f9671a49"},
- {file = "orjson-3.10.1-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:a51fd55d4486bc5293b7a400f9acd55a2dc3b5fc8420d5ffe9b1d6bb1a056a5e"},
- {file = "orjson-3.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53521542a6db1411b3bfa1b24ddce18605a3abdc95a28a67b33f9145f26aa8f2"},
- {file = "orjson-3.10.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:27d610df96ac18ace4931411d489637d20ab3b8f63562b0531bba16011998db0"},
- {file = "orjson-3.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79244b1456e5846d44e9846534bd9e3206712936d026ea8e6a55a7374d2c0694"},
- {file = "orjson-3.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d751efaa8a49ae15cbebdda747a62a9ae521126e396fda8143858419f3b03610"},
- {file = "orjson-3.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27ff69c620a4fff33267df70cfd21e0097c2a14216e72943bd5414943e376d77"},
- {file = "orjson-3.10.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ebc58693464146506fde0c4eb1216ff6d4e40213e61f7d40e2f0dde9b2f21650"},
- {file = "orjson-3.10.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5be608c3972ed902e0143a5b8776d81ac1059436915d42defe5c6ae97b3137a4"},
- {file = "orjson-3.10.1-cp39-none-win32.whl", hash = "sha256:4ae10753e7511d359405aadcbf96556c86e9dbf3a948d26c2c9f9a150c52b091"},
- {file = "orjson-3.10.1-cp39-none-win_amd64.whl", hash = "sha256:fb5bc4caa2c192077fdb02dce4e5ef8639e7f20bec4e3a834346693907362932"},
- {file = "orjson-3.10.1.tar.gz", hash = "sha256:a883b28d73370df23ed995c466b4f6c708c1f7a9bdc400fe89165c96c7603204"},
+ {file = "orjson-3.10.6-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:fb0ee33124db6eaa517d00890fc1a55c3bfe1cf78ba4a8899d71a06f2d6ff5c7"},
+ {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c1c4b53b24a4c06547ce43e5fee6ec4e0d8fe2d597f4647fc033fd205707365"},
+ {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eadc8fd310edb4bdbd333374f2c8fec6794bbbae99b592f448d8214a5e4050c0"},
+ {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:61272a5aec2b2661f4fa2b37c907ce9701e821b2c1285d5c3ab0207ebd358d38"},
+ {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57985ee7e91d6214c837936dc1608f40f330a6b88bb13f5a57ce5257807da143"},
+ {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:633a3b31d9d7c9f02d49c4ab4d0a86065c4a6f6adc297d63d272e043472acab5"},
+ {file = "orjson-3.10.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1c680b269d33ec444afe2bdc647c9eb73166fa47a16d9a75ee56a374f4a45f43"},
+ {file = "orjson-3.10.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:f759503a97a6ace19e55461395ab0d618b5a117e8d0fbb20e70cfd68a47327f2"},
+ {file = "orjson-3.10.6-cp310-none-win32.whl", hash = "sha256:95a0cce17f969fb5391762e5719575217bd10ac5a189d1979442ee54456393f3"},
+ {file = "orjson-3.10.6-cp310-none-win_amd64.whl", hash = "sha256:df25d9271270ba2133cc88ee83c318372bdc0f2cd6f32e7a450809a111efc45c"},
+ {file = "orjson-3.10.6-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:b1ec490e10d2a77c345def52599311849fc063ae0e67cf4f84528073152bb2ba"},
+ {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55d43d3feb8f19d07e9f01e5b9be4f28801cf7c60d0fa0d279951b18fae1932b"},
+ {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac3045267e98fe749408eee1593a142e02357c5c99be0802185ef2170086a863"},
+ {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c27bc6a28ae95923350ab382c57113abd38f3928af3c80be6f2ba7eb8d8db0b0"},
+ {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d27456491ca79532d11e507cadca37fb8c9324a3976294f68fb1eff2dc6ced5a"},
+ {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05ac3d3916023745aa3b3b388e91b9166be1ca02b7c7e41045da6d12985685f0"},
+ {file = "orjson-3.10.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1335d4ef59ab85cab66fe73fd7a4e881c298ee7f63ede918b7faa1b27cbe5212"},
+ {file = "orjson-3.10.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4bbc6d0af24c1575edc79994c20e1b29e6fb3c6a570371306db0993ecf144dc5"},
+ {file = "orjson-3.10.6-cp311-none-win32.whl", hash = "sha256:450e39ab1f7694465060a0550b3f6d328d20297bf2e06aa947b97c21e5241fbd"},
+ {file = "orjson-3.10.6-cp311-none-win_amd64.whl", hash = "sha256:227df19441372610b20e05bdb906e1742ec2ad7a66ac8350dcfd29a63014a83b"},
+ {file = "orjson-3.10.6-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:ea2977b21f8d5d9b758bb3f344a75e55ca78e3ff85595d248eee813ae23ecdfb"},
+ {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b6f3d167d13a16ed263b52dbfedff52c962bfd3d270b46b7518365bcc2121eed"},
+ {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f710f346e4c44a4e8bdf23daa974faede58f83334289df80bc9cd12fe82573c7"},
+ {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7275664f84e027dcb1ad5200b8b18373e9c669b2a9ec33d410c40f5ccf4b257e"},
+ {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0943e4c701196b23c240b3d10ed8ecd674f03089198cf503105b474a4f77f21f"},
+ {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:446dee5a491b5bc7d8f825d80d9637e7af43f86a331207b9c9610e2f93fee22a"},
+ {file = "orjson-3.10.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:64c81456d2a050d380786413786b057983892db105516639cb5d3ee3c7fd5148"},
+ {file = "orjson-3.10.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:960db0e31c4e52fa0fc3ecbaea5b2d3b58f379e32a95ae6b0ebeaa25b93dfd34"},
+ {file = "orjson-3.10.6-cp312-none-win32.whl", hash = "sha256:a6ea7afb5b30b2317e0bee03c8d34c8181bc5a36f2afd4d0952f378972c4efd5"},
+ {file = "orjson-3.10.6-cp312-none-win_amd64.whl", hash = "sha256:874ce88264b7e655dde4aeaacdc8fd772a7962faadfb41abe63e2a4861abc3dc"},
+ {file = "orjson-3.10.6-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:66680eae4c4e7fc193d91cfc1353ad6d01b4801ae9b5314f17e11ba55e934183"},
+ {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:caff75b425db5ef8e8f23af93c80f072f97b4fb3afd4af44482905c9f588da28"},
+ {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3722fddb821b6036fd2a3c814f6bd9b57a89dc6337b9924ecd614ebce3271394"},
+ {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2c116072a8533f2fec435fde4d134610f806bdac20188c7bd2081f3e9e0133f"},
+ {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6eeb13218c8cf34c61912e9df2de2853f1d009de0e46ea09ccdf3d757896af0a"},
+ {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:965a916373382674e323c957d560b953d81d7a8603fbeee26f7b8248638bd48b"},
+ {file = "orjson-3.10.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:03c95484d53ed8e479cade8628c9cea00fd9d67f5554764a1110e0d5aa2de96e"},
+ {file = "orjson-3.10.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:e060748a04cccf1e0a6f2358dffea9c080b849a4a68c28b1b907f272b5127e9b"},
+ {file = "orjson-3.10.6-cp38-none-win32.whl", hash = "sha256:738dbe3ef909c4b019d69afc19caf6b5ed0e2f1c786b5d6215fbb7539246e4c6"},
+ {file = "orjson-3.10.6-cp38-none-win_amd64.whl", hash = "sha256:d40f839dddf6a7d77114fe6b8a70218556408c71d4d6e29413bb5f150a692ff7"},
+ {file = "orjson-3.10.6-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:697a35a083c4f834807a6232b3e62c8b280f7a44ad0b759fd4dce748951e70db"},
+ {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd502f96bf5ea9a61cbc0b2b5900d0dd68aa0da197179042bdd2be67e51a1e4b"},
+ {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f215789fb1667cdc874c1b8af6a84dc939fd802bf293a8334fce185c79cd359b"},
+ {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a2debd8ddce948a8c0938c8c93ade191d2f4ba4649a54302a7da905a81f00b56"},
+ {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5410111d7b6681d4b0d65e0f58a13be588d01b473822483f77f513c7f93bd3b2"},
+ {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb1f28a137337fdc18384079fa5726810681055b32b92253fa15ae5656e1dddb"},
+ {file = "orjson-3.10.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:bf2fbbce5fe7cd1aa177ea3eab2b8e6a6bc6e8592e4279ed3db2d62e57c0e1b2"},
+ {file = "orjson-3.10.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:79b9b9e33bd4c517445a62b90ca0cc279b0f1f3970655c3df9e608bc3f91741a"},
+ {file = "orjson-3.10.6-cp39-none-win32.whl", hash = "sha256:30b0a09a2014e621b1adf66a4f705f0809358350a757508ee80209b2d8dae219"},
+ {file = "orjson-3.10.6-cp39-none-win_amd64.whl", hash = "sha256:49e3bc615652617d463069f91b867a4458114c5b104e13b7ae6872e5f79d0844"},
+ {file = "orjson-3.10.6.tar.gz", hash = "sha256:e54b63d0a7c6c54a5f5f726bc93a2078111ef060fec4ecbf34c5db800ca3b3a7"},
]
[[package]]
name = "packaging"
-version = "23.2"
+version = "24.1"
description = "Core utilities for Python packages"
optional = false
-python-versions = ">=3.7"
+python-versions = ">=3.8"
files = [
- {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"},
- {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"},
+ {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"},
+ {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"},
]
[[package]]
name = "pillow"
-version = "10.3.0"
+version = "10.4.0"
description = "Python Imaging Library (Fork)"
optional = false
python-versions = ">=3.8"
files = [
- {file = "pillow-10.3.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:90b9e29824800e90c84e4022dd5cc16eb2d9605ee13f05d47641eb183cd73d45"},
- {file = "pillow-10.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2c405445c79c3f5a124573a051062300936b0281fee57637e706453e452746c"},
- {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78618cdbccaa74d3f88d0ad6cb8ac3007f1a6fa5c6f19af64b55ca170bfa1edf"},
- {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261ddb7ca91fcf71757979534fb4c128448b5b4c55cb6152d280312062f69599"},
- {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ce49c67f4ea0609933d01c0731b34b8695a7a748d6c8d186f95e7d085d2fe475"},
- {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b14f16f94cbc61215115b9b1236f9c18403c15dd3c52cf629072afa9d54c1cbf"},
- {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d33891be6df59d93df4d846640f0e46f1a807339f09e79a8040bc887bdcd7ed3"},
- {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b50811d664d392f02f7761621303eba9d1b056fb1868c8cdf4231279645c25f5"},
- {file = "pillow-10.3.0-cp310-cp310-win32.whl", hash = "sha256:ca2870d5d10d8726a27396d3ca4cf7976cec0f3cb706debe88e3a5bd4610f7d2"},
- {file = "pillow-10.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f"},
- {file = "pillow-10.3.0-cp310-cp310-win_arm64.whl", hash = "sha256:ccce24b7ad89adb5a1e34a6ba96ac2530046763912806ad4c247356a8f33a67b"},
- {file = "pillow-10.3.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:5f77cf66e96ae734717d341c145c5949c63180842a545c47a0ce7ae52ca83795"},
- {file = "pillow-10.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e4b878386c4bf293578b48fc570b84ecfe477d3b77ba39a6e87150af77f40c57"},
- {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fdcbb4068117dfd9ce0138d068ac512843c52295ed996ae6dd1faf537b6dbc27"},
- {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9797a6c8fe16f25749b371c02e2ade0efb51155e767a971c61734b1bf6293994"},
- {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:9e91179a242bbc99be65e139e30690e081fe6cb91a8e77faf4c409653de39451"},
- {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:1b87bd9d81d179bd8ab871603bd80d8645729939f90b71e62914e816a76fc6bd"},
- {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:81d09caa7b27ef4e61cb7d8fbf1714f5aec1c6b6c5270ee53504981e6e9121ad"},
- {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:048ad577748b9fa4a99a0548c64f2cb8d672d5bf2e643a739ac8faff1164238c"},
- {file = "pillow-10.3.0-cp311-cp311-win32.whl", hash = "sha256:7161ec49ef0800947dc5570f86568a7bb36fa97dd09e9827dc02b718c5643f09"},
- {file = "pillow-10.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:8eb0908e954d093b02a543dc963984d6e99ad2b5e36503d8a0aaf040505f747d"},
- {file = "pillow-10.3.0-cp311-cp311-win_arm64.whl", hash = "sha256:4e6f7d1c414191c1199f8996d3f2282b9ebea0945693fb67392c75a3a320941f"},
- {file = "pillow-10.3.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:e46f38133e5a060d46bd630faa4d9fa0202377495df1f068a8299fd78c84de84"},
- {file = "pillow-10.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:50b8eae8f7334ec826d6eeffaeeb00e36b5e24aa0b9df322c247539714c6df19"},
- {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d3bea1c75f8c53ee4d505c3e67d8c158ad4df0d83170605b50b64025917f338"},
- {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19aeb96d43902f0a783946a0a87dbdad5c84c936025b8419da0a0cd7724356b1"},
- {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:74d28c17412d9caa1066f7a31df8403ec23d5268ba46cd0ad2c50fb82ae40462"},
- {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:ff61bfd9253c3915e6d41c651d5f962da23eda633cf02262990094a18a55371a"},
- {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d886f5d353333b4771d21267c7ecc75b710f1a73d72d03ca06df49b09015a9ef"},
- {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b5ec25d8b17217d635f8935dbc1b9aa5907962fae29dff220f2659487891cd3"},
- {file = "pillow-10.3.0-cp312-cp312-win32.whl", hash = "sha256:51243f1ed5161b9945011a7360e997729776f6e5d7005ba0c6879267d4c5139d"},
- {file = "pillow-10.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:412444afb8c4c7a6cc11a47dade32982439925537e483be7c0ae0cf96c4f6a0b"},
- {file = "pillow-10.3.0-cp312-cp312-win_arm64.whl", hash = "sha256:798232c92e7665fe82ac085f9d8e8ca98826f8e27859d9a96b41d519ecd2e49a"},
- {file = "pillow-10.3.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:4eaa22f0d22b1a7e93ff0a596d57fdede2e550aecffb5a1ef1106aaece48e96b"},
- {file = "pillow-10.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cd5e14fbf22a87321b24c88669aad3a51ec052eb145315b3da3b7e3cc105b9a2"},
- {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1530e8f3a4b965eb6a7785cf17a426c779333eb62c9a7d1bbcf3ffd5bf77a4aa"},
- {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d512aafa1d32efa014fa041d38868fda85028e3f930a96f85d49c7d8ddc0383"},
- {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:339894035d0ede518b16073bdc2feef4c991ee991a29774b33e515f1d308e08d"},
- {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:aa7e402ce11f0885305bfb6afb3434b3cd8f53b563ac065452d9d5654c7b86fd"},
- {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0ea2a783a2bdf2a561808fe4a7a12e9aa3799b701ba305de596bc48b8bdfce9d"},
- {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c78e1b00a87ce43bb37642c0812315b411e856a905d58d597750eb79802aaaa3"},
- {file = "pillow-10.3.0-cp38-cp38-win32.whl", hash = "sha256:72d622d262e463dfb7595202d229f5f3ab4b852289a1cd09650362db23b9eb0b"},
- {file = "pillow-10.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:2034f6759a722da3a3dbd91a81148cf884e91d1b747992ca288ab88c1de15999"},
- {file = "pillow-10.3.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:2ed854e716a89b1afcedea551cd85f2eb2a807613752ab997b9974aaa0d56936"},
- {file = "pillow-10.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dc1a390a82755a8c26c9964d457d4c9cbec5405896cba94cf51f36ea0d855002"},
- {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4203efca580f0dd6f882ca211f923168548f7ba334c189e9eab1178ab840bf60"},
- {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3102045a10945173d38336f6e71a8dc71bcaeed55c3123ad4af82c52807b9375"},
- {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:6fb1b30043271ec92dc65f6d9f0b7a830c210b8a96423074b15c7bc999975f57"},
- {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:1dfc94946bc60ea375cc39cff0b8da6c7e5f8fcdc1d946beb8da5c216156ddd8"},
- {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b09b86b27a064c9624d0a6c54da01c1beaf5b6cadfa609cf63789b1d08a797b9"},
- {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d3b2348a78bc939b4fed6552abfd2e7988e0f81443ef3911a4b8498ca084f6eb"},
- {file = "pillow-10.3.0-cp39-cp39-win32.whl", hash = "sha256:45ebc7b45406febf07fef35d856f0293a92e7417ae7933207e90bf9090b70572"},
- {file = "pillow-10.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:0ba26351b137ca4e0db0342d5d00d2e355eb29372c05afd544ebf47c0956ffeb"},
- {file = "pillow-10.3.0-cp39-cp39-win_arm64.whl", hash = "sha256:50fd3f6b26e3441ae07b7c979309638b72abc1a25da31a81a7fbd9495713ef4f"},
- {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:6b02471b72526ab8a18c39cb7967b72d194ec53c1fd0a70b050565a0f366d355"},
- {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8ab74c06ffdab957d7670c2a5a6e1a70181cd10b727cd788c4dd9005b6a8acd9"},
- {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:048eeade4c33fdf7e08da40ef402e748df113fd0b4584e32c4af74fe78baaeb2"},
- {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2ec1e921fd07c7cda7962bad283acc2f2a9ccc1b971ee4b216b75fad6f0463"},
- {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:4c8e73e99da7db1b4cad7f8d682cf6abad7844da39834c288fbfa394a47bbced"},
- {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:16563993329b79513f59142a6b02055e10514c1a8e86dca8b48a893e33cf91e3"},
- {file = "pillow-10.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170"},
- {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:aff76a55a8aa8364d25400a210a65ff59d0168e0b4285ba6bf2bd83cf675ba32"},
- {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:b7bc2176354defba3edc2b9a777744462da2f8e921fbaf61e52acb95bafa9828"},
- {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:793b4e24db2e8742ca6423d3fde8396db336698c55cd34b660663ee9e45ed37f"},
- {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015"},
- {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c83341b89884e2b2e55886e8fbbf37c3fa5efd6c8907124aeb72f285ae5696e5"},
- {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1a1d1915db1a4fdb2754b9de292642a39a7fb28f1736699527bb649484fb966a"},
- {file = "pillow-10.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a0eaa93d054751ee9964afa21c06247779b90440ca41d184aeb5d410f20ff591"},
- {file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"},
+ {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"},
+ {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"},
+ {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"},
+ {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"},
+ {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"},
+ {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"},
+ {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"},
+ {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"},
+ {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"},
+ {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"},
+ {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"},
+ {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"},
+ {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"},
+ {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"},
+ {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"},
+ {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"},
+ {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"},
+ {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"},
+ {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"},
+ {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"},
+ {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"},
+ {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"},
+ {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"},
+ {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"},
+ {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"},
+ {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"},
+ {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"},
+ {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"},
+ {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"},
+ {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"},
+ {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"},
+ {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"},
+ {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"},
+ {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"},
+ {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"},
+ {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"},
+ {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"},
+ {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"},
+ {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"},
+ {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"},
+ {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"},
+ {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"},
+ {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"},
+ {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"},
+ {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"},
+ {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"},
+ {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"},
+ {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"},
+ {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"},
+ {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"},
+ {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"},
+ {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"},
+ {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"},
+ {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"},
+ {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"},
+ {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"},
+ {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"},
+ {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"},
+ {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"},
+ {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"},
+ {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"},
+ {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"},
+ {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"},
+ {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"},
+ {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"},
+ {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"},
]
[package.extras]
-docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"]
+docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"]
fpx = ["olefile"]
mic = ["olefile"]
tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"]
@@ -845,109 +859,122 @@ testing = ["pytest", "pytest-benchmark"]
[[package]]
name = "pydantic"
-version = "2.7.1"
+version = "2.8.2"
description = "Data validation using Python type hints"
optional = false
python-versions = ">=3.8"
files = [
- {file = "pydantic-2.7.1-py3-none-any.whl", hash = "sha256:e029badca45266732a9a79898a15ae2e8b14840b1eabbb25844be28f0b33f3d5"},
- {file = "pydantic-2.7.1.tar.gz", hash = "sha256:e9dbb5eada8abe4d9ae5f46b9939aead650cd2b68f249bb3a8139dbe125803cc"},
+ {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"},
+ {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"},
]
[package.dependencies]
annotated-types = ">=0.4.0"
-pydantic-core = "2.18.2"
-typing-extensions = ">=4.6.1"
+pydantic-core = "2.20.1"
+typing-extensions = [
+ {version = ">=4.6.1", markers = "python_version < \"3.13\""},
+ {version = ">=4.12.2", markers = "python_version >= \"3.13\""},
+]
[package.extras]
email = ["email-validator (>=2.0.0)"]
[[package]]
name = "pydantic-core"
-version = "2.18.2"
+version = "2.20.1"
description = "Core functionality for Pydantic validation and serialization"
optional = false
python-versions = ">=3.8"
files = [
- {file = "pydantic_core-2.18.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:9e08e867b306f525802df7cd16c44ff5ebbe747ff0ca6cf3fde7f36c05a59a81"},
- {file = "pydantic_core-2.18.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f0a21cbaa69900cbe1a2e7cad2aa74ac3cf21b10c3efb0fa0b80305274c0e8a2"},
- {file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0680b1f1f11fda801397de52c36ce38ef1c1dc841a0927a94f226dea29c3ae3d"},
- {file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:95b9d5e72481d3780ba3442eac863eae92ae43a5f3adb5b4d0a1de89d42bb250"},
- {file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4fcf5cd9c4b655ad666ca332b9a081112cd7a58a8b5a6ca7a3104bc950f2038"},
- {file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b5155ff768083cb1d62f3e143b49a8a3432e6789a3abee8acd005c3c7af1c74"},
- {file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:553ef617b6836fc7e4df130bb851e32fe357ce36336d897fd6646d6058d980af"},
- {file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b89ed9eb7d616ef5714e5590e6cf7f23b02d0d539767d33561e3675d6f9e3857"},
- {file = "pydantic_core-2.18.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:75f7e9488238e920ab6204399ded280dc4c307d034f3924cd7f90a38b1829563"},
- {file = "pydantic_core-2.18.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ef26c9e94a8c04a1b2924149a9cb081836913818e55681722d7f29af88fe7b38"},
- {file = "pydantic_core-2.18.2-cp310-none-win32.whl", hash = "sha256:182245ff6b0039e82b6bb585ed55a64d7c81c560715d1bad0cbad6dfa07b4027"},
- {file = "pydantic_core-2.18.2-cp310-none-win_amd64.whl", hash = "sha256:e23ec367a948b6d812301afc1b13f8094ab7b2c280af66ef450efc357d2ae543"},
- {file = "pydantic_core-2.18.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:219da3f096d50a157f33645a1cf31c0ad1fe829a92181dd1311022f986e5fbe3"},
- {file = "pydantic_core-2.18.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:cc1cfd88a64e012b74e94cd00bbe0f9c6df57049c97f02bb07d39e9c852e19a4"},
- {file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05b7133a6e6aeb8df37d6f413f7705a37ab4031597f64ab56384c94d98fa0e90"},
- {file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:224c421235f6102e8737032483f43c1a8cfb1d2f45740c44166219599358c2cd"},
- {file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b14d82cdb934e99dda6d9d60dc84a24379820176cc4a0d123f88df319ae9c150"},
- {file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2728b01246a3bba6de144f9e3115b532ee44bd6cf39795194fb75491824a1413"},
- {file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:470b94480bb5ee929f5acba6995251ada5e059a5ef3e0dfc63cca287283ebfa6"},
- {file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:997abc4df705d1295a42f95b4eec4950a37ad8ae46d913caeee117b6b198811c"},
- {file = "pydantic_core-2.18.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:75250dbc5290e3f1a0f4618db35e51a165186f9034eff158f3d490b3fed9f8a0"},
- {file = "pydantic_core-2.18.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4456f2dca97c425231d7315737d45239b2b51a50dc2b6f0c2bb181fce6207664"},
- {file = "pydantic_core-2.18.2-cp311-none-win32.whl", hash = "sha256:269322dcc3d8bdb69f054681edff86276b2ff972447863cf34c8b860f5188e2e"},
- {file = "pydantic_core-2.18.2-cp311-none-win_amd64.whl", hash = "sha256:800d60565aec896f25bc3cfa56d2277d52d5182af08162f7954f938c06dc4ee3"},
- {file = "pydantic_core-2.18.2-cp311-none-win_arm64.whl", hash = "sha256:1404c69d6a676245199767ba4f633cce5f4ad4181f9d0ccb0577e1f66cf4c46d"},
- {file = "pydantic_core-2.18.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:fb2bd7be70c0fe4dfd32c951bc813d9fe6ebcbfdd15a07527796c8204bd36242"},
- {file = "pydantic_core-2.18.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6132dd3bd52838acddca05a72aafb6eab6536aa145e923bb50f45e78b7251043"},
- {file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7d904828195733c183d20a54230c0df0eb46ec746ea1a666730787353e87182"},
- {file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c9bd70772c720142be1020eac55f8143a34ec9f82d75a8e7a07852023e46617f"},
- {file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2b8ed04b3582771764538f7ee7001b02e1170223cf9b75dff0bc698fadb00cf3"},
- {file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e6dac87ddb34aaec85f873d737e9d06a3555a1cc1a8e0c44b7f8d5daeb89d86f"},
- {file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ca4ae5a27ad7a4ee5170aebce1574b375de390bc01284f87b18d43a3984df72"},
- {file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:886eec03591b7cf058467a70a87733b35f44707bd86cf64a615584fd72488b7c"},
- {file = "pydantic_core-2.18.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ca7b0c1f1c983e064caa85f3792dd2fe3526b3505378874afa84baf662e12241"},
- {file = "pydantic_core-2.18.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b4356d3538c3649337df4074e81b85f0616b79731fe22dd11b99499b2ebbdf3"},
- {file = "pydantic_core-2.18.2-cp312-none-win32.whl", hash = "sha256:8b172601454f2d7701121bbec3425dd71efcb787a027edf49724c9cefc14c038"},
- {file = "pydantic_core-2.18.2-cp312-none-win_amd64.whl", hash = "sha256:b1bd7e47b1558ea872bd16c8502c414f9e90dcf12f1395129d7bb42a09a95438"},
- {file = "pydantic_core-2.18.2-cp312-none-win_arm64.whl", hash = "sha256:98758d627ff397e752bc339272c14c98199c613f922d4a384ddc07526c86a2ec"},
- {file = "pydantic_core-2.18.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:9fdad8e35f278b2c3eb77cbdc5c0a49dada440657bf738d6905ce106dc1de439"},
- {file = "pydantic_core-2.18.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1d90c3265ae107f91a4f279f4d6f6f1d4907ac76c6868b27dc7fb33688cfb347"},
- {file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:390193c770399861d8df9670fb0d1874f330c79caaca4642332df7c682bf6b91"},
- {file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:82d5d4d78e4448683cb467897fe24e2b74bb7b973a541ea1dcfec1d3cbce39fb"},
- {file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4774f3184d2ef3e14e8693194f661dea5a4d6ca4e3dc8e39786d33a94865cefd"},
- {file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d4d938ec0adf5167cb335acb25a4ee69a8107e4984f8fbd2e897021d9e4ca21b"},
- {file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0e8b1be28239fc64a88a8189d1df7fad8be8c1ae47fcc33e43d4be15f99cc70"},
- {file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:868649da93e5a3d5eacc2b5b3b9235c98ccdbfd443832f31e075f54419e1b96b"},
- {file = "pydantic_core-2.18.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:78363590ef93d5d226ba21a90a03ea89a20738ee5b7da83d771d283fd8a56761"},
- {file = "pydantic_core-2.18.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:852e966fbd035a6468fc0a3496589b45e2208ec7ca95c26470a54daed82a0788"},
- {file = "pydantic_core-2.18.2-cp38-none-win32.whl", hash = "sha256:6a46e22a707e7ad4484ac9ee9f290f9d501df45954184e23fc29408dfad61350"},
- {file = "pydantic_core-2.18.2-cp38-none-win_amd64.whl", hash = "sha256:d91cb5ea8b11607cc757675051f61b3d93f15eca3cefb3e6c704a5d6e8440f4e"},
- {file = "pydantic_core-2.18.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:ae0a8a797a5e56c053610fa7be147993fe50960fa43609ff2a9552b0e07013e8"},
- {file = "pydantic_core-2.18.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:042473b6280246b1dbf530559246f6842b56119c2926d1e52b631bdc46075f2a"},
- {file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a388a77e629b9ec814c1b1e6b3b595fe521d2cdc625fcca26fbc2d44c816804"},
- {file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e25add29b8f3b233ae90ccef2d902d0ae0432eb0d45370fe315d1a5cf231004b"},
- {file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f459a5ce8434614dfd39bbebf1041952ae01da6bed9855008cb33b875cb024c0"},
- {file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eff2de745698eb46eeb51193a9f41d67d834d50e424aef27df2fcdee1b153845"},
- {file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8309f67285bdfe65c372ea3722b7a5642680f3dba538566340a9d36e920b5f0"},
- {file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f93a8a2e3938ff656a7c1bc57193b1319960ac015b6e87d76c76bf14fe0244b4"},
- {file = "pydantic_core-2.18.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:22057013c8c1e272eb8d0eebc796701167d8377441ec894a8fed1af64a0bf399"},
- {file = "pydantic_core-2.18.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cfeecd1ac6cc1fb2692c3d5110781c965aabd4ec5d32799773ca7b1456ac636b"},
- {file = "pydantic_core-2.18.2-cp39-none-win32.whl", hash = "sha256:0d69b4c2f6bb3e130dba60d34c0845ba31b69babdd3f78f7c0c8fae5021a253e"},
- {file = "pydantic_core-2.18.2-cp39-none-win_amd64.whl", hash = "sha256:d9319e499827271b09b4e411905b24a426b8fb69464dfa1696258f53a3334641"},
- {file = "pydantic_core-2.18.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a1874c6dd4113308bd0eb568418e6114b252afe44319ead2b4081e9b9521fe75"},
- {file = "pydantic_core-2.18.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:ccdd111c03bfd3666bd2472b674c6899550e09e9f298954cfc896ab92b5b0e6d"},
- {file = "pydantic_core-2.18.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e18609ceaa6eed63753037fc06ebb16041d17d28199ae5aba0052c51449650a9"},
- {file = "pydantic_core-2.18.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e5c584d357c4e2baf0ff7baf44f4994be121e16a2c88918a5817331fc7599d7"},
- {file = "pydantic_core-2.18.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43f0f463cf89ace478de71a318b1b4f05ebc456a9b9300d027b4b57c1a2064fb"},
- {file = "pydantic_core-2.18.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e1b395e58b10b73b07b7cf740d728dd4ff9365ac46c18751bf8b3d8cca8f625a"},
- {file = "pydantic_core-2.18.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:0098300eebb1c837271d3d1a2cd2911e7c11b396eac9661655ee524a7f10587b"},
- {file = "pydantic_core-2.18.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:36789b70d613fbac0a25bb07ab3d9dba4d2e38af609c020cf4d888d165ee0bf3"},
- {file = "pydantic_core-2.18.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3f9a801e7c8f1ef8718da265bba008fa121243dfe37c1cea17840b0944dfd72c"},
- {file = "pydantic_core-2.18.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:3a6515ebc6e69d85502b4951d89131ca4e036078ea35533bb76327f8424531ce"},
- {file = "pydantic_core-2.18.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20aca1e2298c56ececfd8ed159ae4dde2df0781988c97ef77d5c16ff4bd5b400"},
- {file = "pydantic_core-2.18.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:223ee893d77a310a0391dca6df00f70bbc2f36a71a895cecd9a0e762dc37b349"},
- {file = "pydantic_core-2.18.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2334ce8c673ee93a1d6a65bd90327588387ba073c17e61bf19b4fd97d688d63c"},
- {file = "pydantic_core-2.18.2-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:cbca948f2d14b09d20268cda7b0367723d79063f26c4ffc523af9042cad95592"},
- {file = "pydantic_core-2.18.2-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b3ef08e20ec49e02d5c6717a91bb5af9b20f1805583cb0adfe9ba2c6b505b5ae"},
- {file = "pydantic_core-2.18.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c6fdc8627910eed0c01aed6a390a252fe3ea6d472ee70fdde56273f198938374"},
- {file = "pydantic_core-2.18.2.tar.gz", hash = "sha256:2e29d20810dfc3043ee13ac7d9e25105799817683348823f305ab3f349b9386e"},
+ {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"},
+ {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"},
+ {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"},
+ {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"},
+ {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"},
+ {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"},
+ {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"},
+ {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"},
+ {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"},
+ {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"},
+ {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"},
+ {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"},
+ {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"},
+ {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"},
+ {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"},
+ {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"},
+ {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"},
+ {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"},
+ {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"},
+ {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"},
+ {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"},
+ {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"},
+ {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"},
+ {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"},
+ {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"},
+ {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"},
+ {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"},
+ {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"},
+ {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"},
+ {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"},
+ {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"},
+ {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"},
+ {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"},
+ {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"},
+ {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"},
+ {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"},
+ {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"},
+ {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"},
+ {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"},
+ {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"},
+ {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"},
+ {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"},
+ {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"},
+ {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"},
+ {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"},
+ {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"},
+ {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"},
+ {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"},
+ {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"},
+ {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"},
+ {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"},
+ {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"},
+ {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"},
+ {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"},
+ {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"},
+ {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"},
+ {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"},
+ {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"},
+ {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"},
+ {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"},
+ {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"},
+ {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"},
+ {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"},
+ {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"},
+ {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"},
+ {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"},
+ {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"},
+ {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"},
+ {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"},
+ {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"},
+ {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"},
+ {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"},
+ {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"},
+ {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"},
+ {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"},
+ {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"},
+ {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"},
+ {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"},
+ {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"},
+ {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"},
+ {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"},
+ {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"},
+ {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"},
+ {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"},
+ {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"},
+ {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"},
+ {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"},
+ {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"},
+ {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"},
]
[package.dependencies]
@@ -977,13 +1004,13 @@ testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "no
[[package]]
name = "pytest-asyncio"
-version = "0.21.1"
+version = "0.21.2"
description = "Pytest support for asyncio"
optional = false
python-versions = ">=3.7"
files = [
- {file = "pytest-asyncio-0.21.1.tar.gz", hash = "sha256:40a7eae6dded22c7b604986855ea48400ab15b069ae38116e8c01238e9eeb64d"},
- {file = "pytest_asyncio-0.21.1-py3-none-any.whl", hash = "sha256:8666c1c8ac02631d7c51ba282e0c69a8a452b211ffedf2599099845da5c5c37b"},
+ {file = "pytest_asyncio-0.21.2-py3-none-any.whl", hash = "sha256:ab664c88bb7998f711d8039cacd4884da6430886ae8bbd4eded552ed2004f16b"},
+ {file = "pytest_asyncio-0.21.2.tar.gz", hash = "sha256:d67738fc232b94b326b9d060750beb16e0074210b98dd8b58a5239fa2a154f45"},
]
[package.dependencies]
@@ -1101,13 +1128,13 @@ files = [
[[package]]
name = "requests"
-version = "2.31.0"
+version = "2.32.3"
description = "Python HTTP for Humans."
optional = false
-python-versions = ">=3.7"
+python-versions = ">=3.8"
files = [
- {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"},
- {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"},
+ {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"},
+ {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"},
]
[package.dependencies]
@@ -1190,17 +1217,18 @@ pytest = ">=7.0.0,<9.0.0"
[[package]]
name = "tenacity"
-version = "8.2.3"
+version = "8.5.0"
description = "Retry code until it succeeds"
optional = false
-python-versions = ">=3.7"
+python-versions = ">=3.8"
files = [
- {file = "tenacity-8.2.3-py3-none-any.whl", hash = "sha256:ce510e327a630c9e1beaf17d42e6ffacc88185044ad85cf74c0a8887c6a0f88c"},
- {file = "tenacity-8.2.3.tar.gz", hash = "sha256:5398ef0d78e63f40007c1fb4c0bff96e1911394d2fa8d194f77619c05ff6cc8a"},
+ {file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"},
+ {file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"},
]
[package.extras]
-doc = ["reno", "sphinx", "tornado (>=4.5)"]
+doc = ["reno", "sphinx"]
+test = ["pytest", "tornado (>=4.5)", "typeguard"]
[[package]]
name = "tomli"
@@ -1215,24 +1243,24 @@ files = [
[[package]]
name = "types-pillow"
-version = "10.2.0.20240423"
+version = "10.2.0.20240520"
description = "Typing stubs for Pillow"
optional = false
python-versions = ">=3.8"
files = [
- {file = "types-Pillow-10.2.0.20240423.tar.gz", hash = "sha256:696e68b9b6a58548fc307a8669830469237c5b11809ddf978ac77fafa79251cd"},
- {file = "types_Pillow-10.2.0.20240423-py3-none-any.whl", hash = "sha256:bd12923093b96c91d523efcdb66967a307f1a843bcfaf2d5a529146c10a9ced3"},
+ {file = "types-Pillow-10.2.0.20240520.tar.gz", hash = "sha256:130b979195465fa1e1676d8e81c9c7c30319e8e95b12fae945e8f0d525213107"},
+ {file = "types_Pillow-10.2.0.20240520-py3-none-any.whl", hash = "sha256:33c36494b380e2a269bb742181bea5d9b00820367822dbd3760f07210a1da23d"},
]
[[package]]
name = "types-requests"
-version = "2.31.0.20240406"
+version = "2.32.0.20240712"
description = "Typing stubs for requests"
optional = false
python-versions = ">=3.8"
files = [
- {file = "types-requests-2.31.0.20240406.tar.gz", hash = "sha256:4428df33c5503945c74b3f42e82b181e86ec7b724620419a2966e2de604ce1a1"},
- {file = "types_requests-2.31.0.20240406-py3-none-any.whl", hash = "sha256:6216cdac377c6b9a040ac1c0404f7284bd13199c0e1bb235f4324627e8898cf5"},
+ {file = "types-requests-2.32.0.20240712.tar.gz", hash = "sha256:90c079ff05e549f6bf50e02e910210b98b8ff1ebdd18e19c873cd237737c1358"},
+ {file = "types_requests-2.32.0.20240712-py3-none-any.whl", hash = "sha256:f754283e152c752e46e70942fa2a146b5bc70393522257bb85bd1ef7e019dcc3"},
]
[package.dependencies]
@@ -1240,24 +1268,24 @@ urllib3 = ">=2"
[[package]]
name = "typing-extensions"
-version = "4.11.0"
+version = "4.12.2"
description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false
python-versions = ">=3.8"
files = [
- {file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"},
- {file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"},
+ {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"},
+ {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
]
[[package]]
name = "urllib3"
-version = "2.2.1"
+version = "2.2.2"
description = "HTTP library with thread-safe connection pooling, file post, and more."
optional = false
python-versions = ">=3.8"
files = [
- {file = "urllib3-2.2.1-py3-none-any.whl", hash = "sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d"},
- {file = "urllib3-2.2.1.tar.gz", hash = "sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19"},
+ {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"},
+ {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"},
]
[package.extras]
@@ -1268,40 +1296,43 @@ zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "watchdog"
-version = "4.0.0"
+version = "4.0.1"
description = "Filesystem events monitoring"
optional = false
python-versions = ">=3.8"
files = [
- {file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:39cb34b1f1afbf23e9562501673e7146777efe95da24fab5707b88f7fb11649b"},
- {file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c522392acc5e962bcac3b22b9592493ffd06d1fc5d755954e6be9f4990de932b"},
- {file = "watchdog-4.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6c47bdd680009b11c9ac382163e05ca43baf4127954c5f6d0250e7d772d2b80c"},
- {file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8350d4055505412a426b6ad8c521bc7d367d1637a762c70fdd93a3a0d595990b"},
- {file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c17d98799f32e3f55f181f19dd2021d762eb38fdd381b4a748b9f5a36738e935"},
- {file = "watchdog-4.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4986db5e8880b0e6b7cd52ba36255d4793bf5cdc95bd6264806c233173b1ec0b"},
- {file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:11e12fafb13372e18ca1bbf12d50f593e7280646687463dd47730fd4f4d5d257"},
- {file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5369136a6474678e02426bd984466343924d1df8e2fd94a9b443cb7e3aa20d19"},
- {file = "watchdog-4.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:76ad8484379695f3fe46228962017a7e1337e9acadafed67eb20aabb175df98b"},
- {file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:45cc09cc4c3b43fb10b59ef4d07318d9a3ecdbff03abd2e36e77b6dd9f9a5c85"},
- {file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:eed82cdf79cd7f0232e2fdc1ad05b06a5e102a43e331f7d041e5f0e0a34a51c4"},
- {file = "watchdog-4.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ba30a896166f0fee83183cec913298151b73164160d965af2e93a20bbd2ab605"},
- {file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d18d7f18a47de6863cd480734613502904611730f8def45fc52a5d97503e5101"},
- {file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2895bf0518361a9728773083908801a376743bcc37dfa252b801af8fd281b1ca"},
- {file = "watchdog-4.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87e9df830022488e235dd601478c15ad73a0389628588ba0b028cb74eb72fed8"},
- {file = "watchdog-4.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6e949a8a94186bced05b6508faa61b7adacc911115664ccb1923b9ad1f1ccf7b"},
- {file = "watchdog-4.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6a4db54edea37d1058b08947c789a2354ee02972ed5d1e0dca9b0b820f4c7f92"},
- {file = "watchdog-4.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d31481ccf4694a8416b681544c23bd271f5a123162ab603c7d7d2dd7dd901a07"},
- {file = "watchdog-4.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:8fec441f5adcf81dd240a5fe78e3d83767999771630b5ddfc5867827a34fa3d3"},
- {file = "watchdog-4.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:6a9c71a0b02985b4b0b6d14b875a6c86ddea2fdbebd0c9a720a806a8bbffc69f"},
- {file = "watchdog-4.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:557ba04c816d23ce98a06e70af6abaa0485f6d94994ec78a42b05d1c03dcbd50"},
- {file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:d0f9bd1fd919134d459d8abf954f63886745f4660ef66480b9d753a7c9d40927"},
- {file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f9b2fdca47dc855516b2d66eef3c39f2672cbf7e7a42e7e67ad2cbfcd6ba107d"},
- {file = "watchdog-4.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:73c7a935e62033bd5e8f0da33a4dcb763da2361921a69a5a95aaf6c93aa03a87"},
- {file = "watchdog-4.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:6a80d5cae8c265842c7419c560b9961561556c4361b297b4c431903f8c33b269"},
- {file = "watchdog-4.0.0-py3-none-win32.whl", hash = "sha256:8f9a542c979df62098ae9c58b19e03ad3df1c9d8c6895d96c0d51da17b243b1c"},
- {file = "watchdog-4.0.0-py3-none-win_amd64.whl", hash = "sha256:f970663fa4f7e80401a7b0cbeec00fa801bf0287d93d48368fc3e6fa32716245"},
- {file = "watchdog-4.0.0-py3-none-win_ia64.whl", hash = "sha256:9a03e16e55465177d416699331b0f3564138f1807ecc5f2de9d55d8f188d08c7"},
- {file = "watchdog-4.0.0.tar.gz", hash = "sha256:e3e7065cbdabe6183ab82199d7a4f6b3ba0a438c5a512a68559846ccb76a78ec"},
+ {file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:da2dfdaa8006eb6a71051795856bedd97e5b03e57da96f98e375682c48850645"},
+ {file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e93f451f2dfa433d97765ca2634628b789b49ba8b504fdde5837cdcf25fdb53b"},
+ {file = "watchdog-4.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ef0107bbb6a55f5be727cfc2ef945d5676b97bffb8425650dadbb184be9f9a2b"},
+ {file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:17e32f147d8bf9657e0922c0940bcde863b894cd871dbb694beb6704cfbd2fb5"},
+ {file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:03e70d2df2258fb6cb0e95bbdbe06c16e608af94a3ffbd2b90c3f1e83eb10767"},
+ {file = "watchdog-4.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:123587af84260c991dc5f62a6e7ef3d1c57dfddc99faacee508c71d287248459"},
+ {file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:093b23e6906a8b97051191a4a0c73a77ecc958121d42346274c6af6520dec175"},
+ {file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:611be3904f9843f0529c35a3ff3fd617449463cb4b73b1633950b3d97fa4bfb7"},
+ {file = "watchdog-4.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:62c613ad689ddcb11707f030e722fa929f322ef7e4f18f5335d2b73c61a85c28"},
+ {file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:d4925e4bf7b9bddd1c3de13c9b8a2cdb89a468f640e66fbfabaf735bd85b3e35"},
+ {file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cad0bbd66cd59fc474b4a4376bc5ac3fc698723510cbb64091c2a793b18654db"},
+ {file = "watchdog-4.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a3c2c317a8fb53e5b3d25790553796105501a235343f5d2bf23bb8649c2c8709"},
+ {file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c9904904b6564d4ee8a1ed820db76185a3c96e05560c776c79a6ce5ab71888ba"},
+ {file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:667f3c579e813fcbad1b784db7a1aaa96524bed53437e119f6a2f5de4db04235"},
+ {file = "watchdog-4.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d10a681c9a1d5a77e75c48a3b8e1a9f2ae2928eda463e8d33660437705659682"},
+ {file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0144c0ea9997b92615af1d94afc0c217e07ce2c14912c7b1a5731776329fcfc7"},
+ {file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:998d2be6976a0ee3a81fb8e2777900c28641fb5bfbd0c84717d89bca0addcdc5"},
+ {file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e7921319fe4430b11278d924ef66d4daa469fafb1da679a2e48c935fa27af193"},
+ {file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f0de0f284248ab40188f23380b03b59126d1479cd59940f2a34f8852db710625"},
+ {file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bca36be5707e81b9e6ce3208d92d95540d4ca244c006b61511753583c81c70dd"},
+ {file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:ab998f567ebdf6b1da7dc1e5accfaa7c6992244629c0fdaef062f43249bd8dee"},
+ {file = "watchdog-4.0.1-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dddba7ca1c807045323b6af4ff80f5ddc4d654c8bce8317dde1bd96b128ed253"},
+ {file = "watchdog-4.0.1-py3-none-manylinux2014_armv7l.whl", hash = "sha256:4513ec234c68b14d4161440e07f995f231be21a09329051e67a2118a7a612d2d"},
+ {file = "watchdog-4.0.1-py3-none-manylinux2014_i686.whl", hash = "sha256:4107ac5ab936a63952dea2a46a734a23230aa2f6f9db1291bf171dac3ebd53c6"},
+ {file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64.whl", hash = "sha256:6e8c70d2cd745daec2a08734d9f63092b793ad97612470a0ee4cbb8f5f705c57"},
+ {file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f27279d060e2ab24c0aa98363ff906d2386aa6c4dc2f1a374655d4e02a6c5e5e"},
+ {file = "watchdog-4.0.1-py3-none-manylinux2014_s390x.whl", hash = "sha256:f8affdf3c0f0466e69f5b3917cdd042f89c8c63aebdb9f7c078996f607cdb0f5"},
+ {file = "watchdog-4.0.1-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ac7041b385f04c047fcc2951dc001671dee1b7e0615cde772e84b01fbf68ee84"},
+ {file = "watchdog-4.0.1-py3-none-win32.whl", hash = "sha256:206afc3d964f9a233e6ad34618ec60b9837d0582b500b63687e34011e15bb429"},
+ {file = "watchdog-4.0.1-py3-none-win_amd64.whl", hash = "sha256:7577b3c43e5909623149f76b099ac49a1a01ca4e167d1785c76eb52fa585745a"},
+ {file = "watchdog-4.0.1-py3-none-win_ia64.whl", hash = "sha256:d7b9f5f3299e8dd230880b6c55504a1f69cf1e4316275d1b215ebdd8187ec88d"},
+ {file = "watchdog-4.0.1.tar.gz", hash = "sha256:eebaacf674fa25511e8867028d281e602ee6500045b57f43b08778082f7f8b44"},
]
[package.extras]
@@ -1413,4 +1444,4 @@ multidict = ">=4.0"
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
-content-hash = "540028a924d26a41cf40e1109b2540a642dc668618f338f6bb35d1b40bcaeed4"
+content-hash = "eaa16f38cabc695e4ef785ee4d7e87635669ef3323931d2514747a13a3db8ac8"
diff --git a/libs/ai-endpoints/pyproject.toml b/libs/ai-endpoints/pyproject.toml
index d3bfb2a6..7b7b6b28 100644
--- a/libs/ai-endpoints/pyproject.toml
+++ b/libs/ai-endpoints/pyproject.toml
@@ -1,6 +1,6 @@
[tool.poetry]
name = "langchain-nvidia-ai-endpoints"
-version = "0.1.3"
+version = "0.2.0"
description = "An integration package connecting NVIDIA AI Endpoints and LangChain"
authors = []
readme = "README.md"
@@ -12,7 +12,7 @@ license = "MIT"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
-langchain-core = ">=0.1.27,<0.3"
+langchain-core = ">=0.1.47,<0.3"
aiohttp = "^3.9.1"
pillow = ">=10.0.0,<11.0.0"
diff --git a/libs/ai-endpoints/tests/integration_tests/conftest.py b/libs/ai-endpoints/tests/integration_tests/conftest.py
index 30388a96..2c45386f 100644
--- a/libs/ai-endpoints/tests/integration_tests/conftest.py
+++ b/libs/ai-endpoints/tests/integration_tests/conftest.py
@@ -21,6 +21,12 @@ def pytest_addoption(parser: pytest.Parser) -> None:
nargs="+",
help="Run tests for a specific chat model or list of models",
)
+ parser.addoption(
+ "--tool-model-id",
+ action="store",
+ nargs="+",
+ help="Run tests for a specific chat models that support tool calling",
+ )
parser.addoption(
"--qa-model-id",
action="store",
@@ -30,12 +36,14 @@ def pytest_addoption(parser: pytest.Parser) -> None:
parser.addoption(
"--embedding-model-id",
action="store",
- help="Run tests for a specific embedding model",
+ nargs="+",
+ help="Run tests for a specific embedding model or list of models",
)
parser.addoption(
"--rerank-model-id",
action="store",
- help="Run tests for a specific rerank model",
+ nargs="+",
+ help="Run tests for a specific rerank model or list of models",
)
parser.addoption(
"--vlm-model-id",
@@ -72,20 +80,24 @@ def get_all_known_models() -> List[Model]:
]
metafunc.parametrize("chat_model", models, ids=models)
+ if "tool_model" in metafunc.fixturenames:
+ models = ["meta/llama-3.1-8b-instruct"]
+ if model_list := metafunc.config.getoption("tool_model_id"):
+ models = model_list
+ if metafunc.config.getoption("all_models"):
+ models = [
+ model.id
+ for model in ChatNVIDIA(**mode).available_models
+ if model.model_type == "chat" and model.supports_tools
+ ]
+ metafunc.parametrize("tool_model", models, ids=models)
+
if "rerank_model" in metafunc.fixturenames:
- models = ["nv-rerank-qa-mistral-4b:1"]
- if model := metafunc.config.getoption("rerank_model_id"):
- models = [model]
- # nim-mode reranking does not support model listing via /v1/models endpoint
+ models = [NVIDIARerank._default_model_name]
+ if model_list := metafunc.config.getoption("rerank_model_id"):
+ models = model_list
if metafunc.config.getoption("all_models"):
- if mode.get("mode", None) == "nim":
- models = [model.id for model in NVIDIARerank(**mode).available_models]
- else:
- models = [
- model.id
- for model in get_all_known_models()
- if model.model_type == "ranking"
- ]
+ models = [model.id for model in NVIDIARerank(**mode).available_models]
metafunc.parametrize("rerank_model", models, ids=models)
if "vlm_model" in metafunc.fixturenames:
@@ -114,8 +126,10 @@ def get_all_known_models() -> List[Model]:
if "embedding_model" in metafunc.fixturenames:
models = [NVIDIAEmbeddings._default_model]
- if metafunc.config.getoption("embedding_model_id"):
- models = [metafunc.config.getoption("embedding_model_id")]
+ if metafunc.config.getoption("all_models"):
+ models = [model.id for model in NVIDIAEmbeddings(**mode).available_models]
+ if model_list := metafunc.config.getoption("embedding_model_id"):
+ models = model_list
if metafunc.config.getoption("all_models"):
models = [model.id for model in NVIDIAEmbeddings(**mode).available_models]
metafunc.parametrize("embedding_model", models, ids=models)
diff --git a/libs/ai-endpoints/tests/integration_tests/test_bind_tools.py b/libs/ai-endpoints/tests/integration_tests/test_bind_tools.py
new file mode 100644
index 00000000..c9a84b69
--- /dev/null
+++ b/libs/ai-endpoints/tests/integration_tests/test_bind_tools.py
@@ -0,0 +1,738 @@
+import json
+import warnings
+from typing import Any, Callable, List, Literal, Optional, Union
+
+import pytest
+from langchain_core.messages import (
+ AIMessage,
+ AIMessageChunk,
+ BaseMessage,
+ BaseMessageChunk,
+)
+from langchain_core.pydantic_v1 import Field
+from langchain_core.tools import tool
+
+from langchain_nvidia_ai_endpoints import ChatNVIDIA
+
+#
+# ways to specify tools:
+# 0. bind_tools
+# ways to specify tool_choice:
+# 1. invoke
+# 2. bind_tools
+# 3. stream
+# tool_choice levels:
+# 4. "none"
+# 5. "auto" (accuracy only)
+# 6. None (accuracy only)
+# 7. "required"
+# 8. {"function": {"name": tool name}} (partial function)
+# 9. {"type": "function", "function": {"name": tool name}}
+# 10. "any" (bind_tools only)
+# 11. tool name (bind_tools only)
+# 12. True (bind_tools only)
+# 13. False (bind_tools only)
+# tools levels:
+# 14. no tools
+# 15. one tool
+# 16. multiple tools (accuracy only)
+# test types:
+# 17. deterministic (minimial accuracy tests; relies on basic tool calling skills)
+# 18. accuracy (proper tool; proper arguments)
+# edge/negative tests:
+# 19. require unknown named tool (invoke/stream only)
+# 20. partial function (invoke/stream only)
+# 21. not enough tokens to generate tool call
+# 22. tool with no arguments
+# 23. duplicate tool names
+# 24. unknown tool (invoke/stream only)
+# ways to specify parallel_tool_calls: (accuracy only)
+# 25. invoke
+# 26. stream
+
+# todo: parallel_tool_calls w/ bind_tools
+# todo: parallel_tool_calls w/ tool_choice = function
+# todo: async methods
+# todo: too many tools
+
+
+@tool
+def xxyyzz(
+ a: int = Field(..., description="First number"),
+ b: int = Field(..., description="Second number"),
+) -> int:
+ """xxyyzz two numbers"""
+ return (a**b) % (b - a)
+
+
+@tool
+def zzyyxx(
+ a: int = Field(..., description="First number"),
+ b: int = Field(..., description="Second number"),
+) -> int:
+ """zzyyxx two numbers"""
+ return (b**a) % (a - b)
+
+
+@tool
+def tool_no_args() -> str:
+ """8-ball"""
+ return "lookin' good"
+
+
+@tool
+def get_current_weather(
+ location: str = Field(..., description="The location to get the weather for"),
+ scale: Optional[str] = Field(
+ default="Fahrenheit",
+ description="The temperature scale (e.g., Celsius or Fahrenheit)",
+ ),
+) -> str:
+ """Get the current weather for a location"""
+ return f"The current weather in {location} is sunny."
+
+
+def eval_stream(
+ llm: ChatNVIDIA,
+ msg: str,
+ tool_choice: Any = None,
+ parallel_tool_calls: bool = False,
+) -> BaseMessageChunk:
+ params = {}
+ if tool_choice:
+ params["tool_choice"] = tool_choice
+ if parallel_tool_calls:
+ params["parallel_tool_calls"] = True
+
+ generator = llm.stream(msg, **params) # type: ignore
+ response = next(generator)
+ for chunk in generator:
+ assert isinstance(chunk, AIMessageChunk)
+ response += chunk
+ return response
+
+
+def eval_invoke(
+ llm: ChatNVIDIA,
+ msg: str,
+ tool_choice: Any = None,
+ parallel_tool_calls: bool = False,
+) -> BaseMessage:
+ params = {}
+ if tool_choice:
+ params["tool_choice"] = tool_choice
+ if parallel_tool_calls:
+ params["parallel_tool_calls"] = True
+
+ return llm.invoke(msg, **params) # type: ignore
+
+
+def check_response_structure(response: AIMessage) -> None:
+ assert not response.content # should be `response.content is None` but
+ # AIMessage.content: Union[str, List[Union[str, Dict]]] cannot be None.
+ for tool_call in response.tool_calls:
+ assert tool_call["id"] is not None
+ assert response.response_metadata is not None
+ assert isinstance(response.response_metadata, dict)
+ assert "finish_reason" in response.response_metadata
+ assert response.response_metadata["finish_reason"] in [
+ "tool_calls",
+ "stop",
+ ] # todo: remove "stop"
+ assert len(response.tool_calls) > 0
+
+
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+@pytest.mark.xfail(reason="Accuracy test")
+def test_accuracy_extra(tool_model: str, mode: dict, func: Callable) -> None:
+ llm = ChatNVIDIA(temperature=0, model=tool_model, **mode).bind_tools([xxyyzz])
+ response = func(llm, "What is 11 xxyyzz 3?")
+ assert not response.content # should be `response.content is None` but
+ # AIMessage.content: Union[str, List[Union[str, Dict]]] cannot be None.
+ assert response.additional_kwargs is not None
+ # todo: this is not good, should not care about the param
+ if func == eval_invoke:
+ assert isinstance(response, AIMessage)
+ assert "tool_calls" in response.additional_kwargs
+ assert isinstance(response.additional_kwargs["tool_calls"], list)
+ assert response.additional_kwargs["tool_calls"]
+ assert response.tool_calls
+ for tool_call in response.additional_kwargs["tool_calls"]:
+ assert "id" in tool_call
+ assert tool_call["id"] is not None
+ assert "type" in tool_call
+ assert tool_call["type"] == "function"
+ assert "function" in tool_call
+ assert len(response.additional_kwargs["tool_calls"]) > 0
+ tool_call = response.additional_kwargs["tool_calls"][0]
+ assert tool_call["function"]["name"] == "xxyyzz"
+ assert json.loads(tool_call["function"]["arguments"]) == {"a": 11, "b": 3}
+ else:
+ assert isinstance(response, AIMessageChunk)
+ assert response.tool_call_chunks
+ assert response.response_metadata is not None
+ assert isinstance(response.response_metadata, dict)
+ if "content" in response.response_metadata:
+ assert response.response_metadata["content"] is None
+ assert "model_name" in response.response_metadata
+ assert response.response_metadata["model_name"] == tool_model
+ assert "finish_reason" in response.response_metadata
+ assert response.response_metadata["finish_reason"] in [
+ "tool_calls",
+ "stop",
+ ] # todo: remove "stop"
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ "none",
+ "required",
+ {"function": {"name": "xxyyzz"}},
+ {"type": "function", "function": {"name": "xxyyzz"}},
+ ],
+ ids=["none", "required", "partial", "function"],
+)
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+def test_tool_choice_with_no_tool(
+ tool_model: str, mode: dict, tool_choice: Any, func: Callable
+) -> None:
+ llm = ChatNVIDIA(model=tool_model, **mode)
+ with pytest.raises(Exception) as e:
+ func(llm, "What is 11 xxyyzz 3?", tool_choice=tool_choice)
+ assert "400" in str(e.value) or "###" in str(
+ e.value
+ ) # todo: stop transforming 400 -> ###
+ assert (
+ "Value error, When using `tool_choice`, `tools` must be set." in str(e.value)
+ or (
+ "Value error, Invalid value for `tool_choice`: `tool_choice` is only "
+ "allowed when `tools` are specified."
+ )
+ in str(e.value)
+ or "invalid_request_error" in str(e.value)
+ )
+
+
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+def test_tool_choice_none(tool_model: str, mode: dict, func: Callable) -> None:
+ llm = ChatNVIDIA(model=tool_model, **mode).bind_tools(tools=[xxyyzz])
+ response = func(llm, "What is 11 xxyyzz 3?", tool_choice="none")
+ assert "tool_calls" not in response.additional_kwargs
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ {"function": {"name": "xxyyzz"}},
+ ],
+ ids=["partial"],
+)
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+def test_tool_choice_negative(
+ tool_model: str,
+ mode: dict,
+ tool_choice: Optional[
+ Union[dict, str, Literal["auto", "none", "any", "required"], bool]
+ ],
+ func: Callable,
+) -> None:
+ llm = ChatNVIDIA(model=tool_model, **mode).bind_tools([xxyyzz])
+ with pytest.raises(Exception) as e:
+ func(llm, "What is 11 xxyyzz 3?", tool_choice=tool_choice)
+ assert "400" in str(e.value) or "###" in str(
+ e.value
+ ) # todo: stop transforming 400 -> ###
+ assert (
+ "invalid_request_error" in str(e.value)
+ or "value_error" in str(e.value)
+ or "Incorrectly formatted `tool_choice`" in str(e.value)
+ )
+
+
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+@pytest.mark.xfail(reason="Server side is broken")
+def test_tool_choice_negative_max_tokens_required(
+ tool_model: str,
+ mode: dict,
+ func: Callable,
+) -> None:
+ llm = ChatNVIDIA(max_tokens=5, model=tool_model, **mode).bind_tools([xxyyzz])
+ with pytest.raises(Exception) as e:
+ func(llm, "What is 11 xxyyzz 3?", tool_choice="required")
+ assert "400" in str(e.value) or "###" in str(
+ e.value
+ ) # todo: stop transforming 400 -> ###
+ assert "invalid_request_error" in str(e.value)
+ assert (
+ "Could not finish the message because max_tokens was reached. "
+ "Please try again with higher max_tokens."
+ ) in str(e.value)
+
+
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+@pytest.mark.xfail(reason="Server side is broken")
+def test_tool_choice_negative_max_tokens_function(
+ tool_model: str,
+ mode: dict,
+ func: Callable,
+) -> None:
+ llm = ChatNVIDIA(max_tokens=5, model=tool_model, **mode).bind_tools([xxyyzz])
+ response = func(
+ llm,
+ "What is 11 xxyyzz 3?",
+ tool_choice={"type": "function", "function": {"name": "xxyyzz"}},
+ )
+ # todo: this is not good, should not care about the param
+ if func == eval_invoke:
+ assert isinstance(response, AIMessage)
+ assert "tool_calls" in response.additional_kwargs
+ assert response.invalid_tool_calls
+ else:
+ assert isinstance(response, AIMessageChunk)
+ assert response.tool_call_chunks
+ assert "finish_reason" in response.response_metadata
+ assert response.response_metadata["finish_reason"] == "length"
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ "required",
+ {"type": "function", "function": {"name": "tool_no_args"}},
+ ],
+ ids=["required", "function"],
+)
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+def test_tool_choice_negative_no_args(
+ tool_model: str,
+ mode: dict,
+ tool_choice: Optional[
+ Union[dict, str, Literal["auto", "none", "any", "required"], bool]
+ ],
+ func: Callable,
+) -> None:
+ llm = ChatNVIDIA(model=tool_model, **mode).bind_tools([tool_no_args])
+ response = func(llm, "What does the 8-ball say?", tool_choice=tool_choice)
+ # todo: this is not good, should not care about the param
+ if func == eval_invoke:
+ assert isinstance(response, AIMessage)
+ assert response.tool_calls
+ else:
+ assert isinstance(response, AIMessageChunk)
+ assert response.tool_call_chunks
+ # assert "tool_calls" in response.additional_kwargs
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ "required",
+ {"type": "function", "function": {"name": "tool_no_args"}},
+ ],
+ ids=["required", "function"],
+)
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+@pytest.mark.xfail(reason="Accuracy test")
+def test_accuracy_tool_choice_negative_no_args(
+ tool_model: str,
+ mode: dict,
+ tool_choice: Optional[
+ Union[dict, str, Literal["auto", "none", "any", "required"], bool]
+ ],
+ func: Callable,
+) -> None:
+ llm = ChatNVIDIA(model=tool_model, **mode).bind_tools([tool_no_args])
+ response = func(llm, "What does the 8-ball say?", tool_choice=tool_choice)
+ assert isinstance(response, AIMessage)
+ # assert "tool_calls" in response.additional_kwargs
+ assert response.tool_calls
+ assert response.tool_calls[0]["name"] == "tool_no_args"
+ assert response.tool_calls[0]["args"] == {}
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ "required",
+ {"type": "function", "function": {"name": "xxyyzz"}},
+ ],
+ ids=["required", "function"],
+)
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+def test_tool_choice_negative_duplicate_tool(
+ tool_model: str,
+ mode: dict,
+ tool_choice: Optional[
+ Union[dict, str, Literal["auto", "none", "any", "required"], bool]
+ ],
+ func: Callable,
+) -> None:
+ llm = ChatNVIDIA(model=tool_model, **mode).bind_tools([xxyyzz, xxyyzz])
+ response = func(llm, "What is 11 xxyyzz 3?", tool_choice=tool_choice)
+ assert isinstance(response, AIMessage)
+ assert response.tool_calls
+ # assert "tool_calls" in response.additional_kwargs
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ "required",
+ {"type": "function", "function": {"name": "xxyyzz"}},
+ ],
+ ids=["required", "function"],
+)
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+def test_tool_choice(
+ tool_model: str,
+ mode: dict,
+ tool_choice: Optional[
+ Union[dict, str, Literal["auto", "none", "any", "required"], bool]
+ ],
+ func: Callable,
+) -> None:
+ llm = ChatNVIDIA(model=tool_model, **mode).bind_tools([xxyyzz])
+ response = func(llm, "What is 11 xxyyzz 3?", tool_choice=tool_choice)
+ assert isinstance(response, AIMessage)
+ check_response_structure(response)
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ "auto",
+ None,
+ "required",
+ {"type": "function", "function": {"name": "xxyyzz"}},
+ ],
+ ids=["auto", "absent", "required", "function"],
+)
+@pytest.mark.parametrize(
+ "tools",
+ [[xxyyzz], [xxyyzz, zzyyxx], [zzyyxx, xxyyzz]],
+ ids=["xxyyzz", "xxyyzz_and_zzyyxx", "zzyyxx_and_xxyyzz"],
+)
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+@pytest.mark.xfail(reason="Accuracy test")
+def test_accuracy_tool_choice(
+ tool_model: str,
+ mode: dict,
+ tools: List,
+ tool_choice: Any,
+ func: Callable,
+) -> None:
+ llm = ChatNVIDIA(temperature=0, model=tool_model, **mode).bind_tools(tools)
+ response = func(llm, "What is 11 xxyyzz 3?", tool_choice=tool_choice)
+ assert isinstance(response, AIMessage)
+ check_response_structure(response)
+ tool_call = response.tool_calls[0]
+ assert tool_call["name"] == "xxyyzz"
+ assert tool_call["args"] == {"b": 3, "a": 11}
+
+
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+def test_tool_choice_negative_unknown_tool(
+ tool_model: str,
+ mode: dict,
+ func: Callable,
+) -> None:
+ llm = ChatNVIDIA(model=tool_model, **mode).bind_tools(tools=[xxyyzz])
+ with pytest.raises(Exception) as e:
+ func(
+ llm,
+ "What is 11 xxyyzz 3?",
+ tool_choice={"type": "function", "function": {"name": "zzyyxx"}},
+ )
+ assert (
+ "not found in the tools list" in str(e.value)
+ or "no function named" in str(e.value)
+ or "does not match any of the specified" in str(e.value)
+ )
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ {"function": {"name": "xxyyzz"}},
+ {"type": "function", "function": {"name": "xxyyzz"}},
+ "xxyyzz",
+ ],
+ ids=["partial", "function", "name"],
+)
+def test_bind_tool_tool_choice_with_no_tool_client(
+ tool_model: str,
+ mode: dict,
+ tool_choice: Optional[
+ Union[dict, str, Literal["auto", "none", "any", "required"], bool]
+ ],
+) -> None:
+ with pytest.raises(ValueError) as e:
+ ChatNVIDIA(model=tool_model, **mode).bind_tools(
+ tools=[], tool_choice=tool_choice
+ )
+ assert "not found in the tools list" in str(e.value)
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ "none",
+ "required",
+ "any",
+ True,
+ False,
+ ],
+ ids=["none", "required", "any", "True", "False"],
+)
+def test_bind_tool_tool_choice_with_no_tool_server(
+ tool_model: str, mode: dict, tool_choice: Any
+) -> None:
+ llm = ChatNVIDIA(model=tool_model, **mode).bind_tools([], tool_choice=tool_choice)
+ with pytest.raises(Exception) as e:
+ llm.invoke("What is 11 xxyyzz 3?")
+ assert "400" in str(e.value) or "###" in str(
+ e.value
+ ) # todo: stop transforming 400 -> ###
+ assert (
+ "Value error, When using `tool_choice`, `tools` must be set." in str(e.value)
+ or (
+ "Value error, Invalid value for `tool_choice`: `tool_choice` is only "
+ "allowed when `tools` are specified."
+ )
+ in str(e.value)
+ or "Expected an array with minimum length" in str(e.value)
+ or "should be non-empty" in str(e.value)
+ )
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ ["none", False],
+)
+def test_bind_tool_tool_choice_none(
+ tool_model: str, mode: dict, tool_choice: Any
+) -> None:
+ llm = ChatNVIDIA(model=tool_model, **mode).bind_tools(
+ tools=[xxyyzz], tool_choice=tool_choice
+ )
+ response = llm.invoke("What is 11 xxyyzz 3?")
+ assert isinstance(response, AIMessage)
+ assert "tool_calls" not in response.additional_kwargs
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ "required",
+ {"function": {"name": "xxyyzz"}},
+ {"type": "function", "function": {"name": "xxyyzz"}},
+ "any",
+ "xxyyzz",
+ True,
+ ],
+ ids=["required", "partial", "function", "any", "name", "True"],
+)
+def test_bind_tool_tool_choice(
+ tool_model: str,
+ mode: dict,
+ tool_choice: Optional[
+ Union[dict, str, Literal["auto", "none", "any", "required"], bool]
+ ],
+) -> None:
+ llm = ChatNVIDIA(model=tool_model, **mode).bind_tools(
+ [xxyyzz], tool_choice=tool_choice
+ )
+ response = llm.invoke("What is 11 xxyyzz 3?")
+ assert isinstance(response, AIMessage)
+ check_response_structure(response)
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ "auto",
+ None,
+ "required",
+ {"function": {"name": "xxyyzz"}},
+ {"type": "function", "function": {"name": "xxyyzz"}},
+ "any",
+ "xxyyzz",
+ True,
+ ],
+ ids=["auto", "absent", "required", "partial", "function", "any", "name", "True"],
+)
+@pytest.mark.parametrize(
+ "tools",
+ [[xxyyzz], [xxyyzz, zzyyxx], [zzyyxx, xxyyzz]],
+ ids=["xxyyzz", "xxyyzz_and_zzyyxx", "zzyyxx_and_xxyyzz"],
+)
+@pytest.mark.xfail(reason="Accuracy test")
+def test_accuracy_bind_tool_tool_choice(
+ tool_model: str,
+ mode: dict,
+ tools: List,
+ tool_choice: Any,
+) -> None:
+ llm = ChatNVIDIA(temperature=0, model=tool_model, **mode).bind_tools(
+ tools=tools, tool_choice=tool_choice
+ )
+ response = llm.invoke("What is 11 xxyyzz 3?")
+ assert isinstance(response, AIMessage)
+ check_response_structure(response)
+ tool_call = response.tool_calls[0]
+ assert tool_call["name"] == "xxyyzz"
+ assert tool_call["args"] == {"b": 3, "a": 11}
+
+
+def test_known_does_not_warn(tool_model: str, mode: dict) -> None:
+ with warnings.catch_warnings():
+ warnings.simplefilter("error")
+ ChatNVIDIA(model=tool_model, **mode).bind_tools([xxyyzz])
+
+
+def test_unknown_warns(mode: dict) -> None:
+ candidates = [
+ model for model in ChatNVIDIA.get_available_models() if not model.supports_tools
+ ]
+ assert candidates, "All models support tools"
+ with pytest.warns(UserWarning) as record:
+ ChatNVIDIA(model=candidates[0].id, **mode).bind_tools([xxyyzz])
+ assert len(record) == 1
+ assert "not known to support tools" in str(record[0].message)
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ "auto",
+ None,
+ "required",
+ ],
+ ids=["auto", "absent", "required"],
+)
+@pytest.mark.parametrize(
+ "tools",
+ [[xxyyzz, zzyyxx], [zzyyxx, xxyyzz]],
+ ids=["xxyyzz_and_zzyyxx", "zzyyxx_and_xxyyzz"],
+)
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+@pytest.mark.xfail(reason="Accuracy test")
+def test_accuracy_parallel_tool_calls_hard(
+ tool_model: str,
+ mode: dict,
+ tools: List,
+ tool_choice: Any,
+ func: Callable,
+) -> None:
+ llm = ChatNVIDIA(seed=42, temperature=1, model=tool_model, **mode).bind_tools(tools)
+ response = func(
+ llm,
+ "What is 11 xxyyzz 3 zzyyxx 5?",
+ tool_choice=tool_choice,
+ parallel_tool_calls=True,
+ )
+ assert isinstance(response, AIMessage)
+ check_response_structure(response)
+ assert len(response.tool_calls) == 2
+ valid_tool_names = ["xxyyzz", "zzyyxx"]
+ tool_call0 = response.tool_calls[0]
+ assert tool_call0["name"] in valid_tool_names
+ valid_tool_names.remove(tool_call0["name"])
+ tool_call1 = response.tool_calls[1]
+ assert tool_call1["name"] in valid_tool_names
+
+
+@pytest.mark.parametrize(
+ "tool_choice",
+ [
+ "auto",
+ None,
+ "required",
+ ],
+ ids=["auto", "absent", "required"],
+)
+@pytest.mark.parametrize(
+ "func",
+ [eval_invoke, eval_stream],
+ ids=["invoke", "stream"],
+)
+@pytest.mark.xfail(reason="Accuracy test")
+def test_accuracy_parallel_tool_calls_easy(
+ tool_model: str,
+ mode: dict,
+ tool_choice: Any,
+ func: Callable,
+) -> None:
+ llm = ChatNVIDIA(seed=42, temperature=1, model=tool_model, **mode).bind_tools(
+ tools=[get_current_weather],
+ )
+ response = func(
+ llm,
+ "What is the weather in Boston, and what is the weather in Dublin?",
+ tool_choice=tool_choice,
+ parallel_tool_calls=True,
+ )
+ assert isinstance(response, AIMessage)
+ check_response_structure(response)
+ assert len(response.tool_calls) == 2
+ valid_args = ["Boston", "Dublin"]
+ tool_call0 = response.tool_calls[0]
+ assert tool_call0["name"] == "get_current_weather"
+ assert tool_call0["args"]["location"] in valid_args
+ valid_args.remove(tool_call0["args"]["location"])
+ tool_call1 = response.tool_calls[1]
+ assert tool_call1["name"] == "get_current_weather"
+ assert tool_call1["args"]["location"] in valid_args
diff --git a/libs/ai-endpoints/tests/integration_tests/test_chat_models.py b/libs/ai-endpoints/tests/integration_tests/test_chat_models.py
index 4940c5b5..6ed7c4ae 100644
--- a/libs/ai-endpoints/tests/integration_tests/test_chat_models.py
+++ b/libs/ai-endpoints/tests/integration_tests/test_chat_models.py
@@ -5,7 +5,12 @@
import pytest
from langchain_core.load.dump import dumps
from langchain_core.load.load import loads
-from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage
+from langchain_core.messages import (
+ AIMessage,
+ BaseMessage,
+ HumanMessage,
+ SystemMessage,
+)
from langchain_nvidia_ai_endpoints.chat_models import ChatNVIDIA
@@ -25,6 +30,10 @@ def test_chat_ai_endpoints(chat_model: str, mode: dict) -> None:
response = chat.invoke([message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
+ # compatibility test for ChatMessage (pre 0.2)
+ # assert isinstance(response, ChatMessage)
+ assert hasattr(response, "role")
+ assert response.role == "assistant"
def test_unknown_model() -> None:
@@ -120,6 +129,12 @@ def test_chat_ai_endpoints_system_message(chat_model: str, mode: dict) -> None:
),
],
)
+@pytest.mark.xfail(
+ reason=(
+ "not all endpoints support system messages, "
+ "repeated message types or ending with an ai message"
+ )
+)
def test_messages(
chat_model: str, mode: dict, system: List, exchange: List[BaseMessage]
) -> None:
@@ -139,11 +154,17 @@ def test_ai_endpoints_streaming(chat_model: str, mode: dict) -> None:
"""Test streaming tokens from ai endpoints."""
llm = ChatNVIDIA(model=chat_model, max_tokens=36, **mode)
+ generator = llm.stream("I'm Pickle Rick")
+ response = next(generator)
cnt = 0
- for token in llm.stream("I'm Pickle Rick"):
- assert isinstance(token.content, str)
+ for chunk in generator:
+ assert isinstance(chunk.content, str)
+ response += chunk
cnt += 1
assert cnt > 1
+ # compatibility test for ChatMessageChunk (pre 0.2)
+ # assert hasattr(response, "role")
+ # assert response.role == "assistant" # does not work, role not passed through
async def test_ai_endpoints_astream(chat_model: str, mode: dict) -> None:
diff --git a/libs/ai-endpoints/tests/integration_tests/test_embeddings.py b/libs/ai-endpoints/tests/integration_tests/test_embeddings.py
index b1eabd30..2316b1e4 100644
--- a/libs/ai-endpoints/tests/integration_tests/test_embeddings.py
+++ b/libs/ai-endpoints/tests/integration_tests/test_embeddings.py
@@ -102,6 +102,8 @@ def test_embed_documents_truncate(
@pytest.mark.parametrize("nvolveqa_40k", ["playground_nvolveqa_40k", "nvolveqa_40k"])
def test_embed_nvolveqa_40k_compat(nvolveqa_40k: str, mode: dict) -> None:
+ if mode:
+ pytest.skip("Test only relevant for API Catalog")
with pytest.warns(UserWarning):
embedding = NVIDIAEmbeddings(model=nvolveqa_40k, truncate="NONE", **mode)
text = "nvidia " * 2048
diff --git a/libs/ai-endpoints/tests/integration_tests/test_ranking.py b/libs/ai-endpoints/tests/integration_tests/test_ranking.py
index 5937cb30..867aab64 100644
--- a/libs/ai-endpoints/tests/integration_tests/test_ranking.py
+++ b/libs/ai-endpoints/tests/integration_tests/test_ranking.py
@@ -179,3 +179,41 @@ def test_rerank_batching(
# result_docs[i].page_content == reference_docs[i].page_content
# for i in range(top_n)
# ), "batched results do not match unbatched results"
+
+
+@pytest.mark.parametrize("truncate", ["END"])
+def test_truncate_positive(rerank_model: str, mode: dict, truncate: str) -> None:
+ query = "What is acceleration?"
+ documents = [
+ Document(page_content="NVIDIA " * length)
+ for length in [32, 1024, 64, 128, 2048, 256, 512]
+ ]
+ client = NVIDIARerank(
+ model=rerank_model, top_n=len(documents), truncate=truncate, **mode
+ )
+ response = client.compress_documents(documents=documents, query=query)
+ assert len(response) == len(documents)
+
+
+@pytest.mark.parametrize("truncate", [None, "NONE"])
+@pytest.mark.xfail(
+ reason=(
+ "truncation is inconsistent across models, "
+ "nv-rerank-qa-mistral-4b:1 truncates by default "
+ "while others do not"
+ )
+)
+def test_truncate_negative(rerank_model: str, mode: dict, truncate: str) -> None:
+ query = "What is acceleration?"
+ documents = [
+ Document(page_content="NVIDIA " * length)
+ for length in [32, 1024, 64, 128, 2048, 256, 512]
+ ]
+ truncate_param = {}
+ if truncate:
+ truncate_param = {"truncate": truncate}
+ client = NVIDIARerank(model=rerank_model, **truncate_param, **mode)
+ with pytest.raises(Exception) as e:
+ client.compress_documents(documents=documents, query=query)
+ assert "400" in str(e.value)
+ assert "exceeds maximum allowed" in str(e.value)
diff --git a/libs/ai-endpoints/tests/integration_tests/test_vlm_models.py b/libs/ai-endpoints/tests/integration_tests/test_vlm_models.py
index c181e175..260073c6 100644
--- a/libs/ai-endpoints/tests/integration_tests/test_vlm_models.py
+++ b/libs/ai-endpoints/tests/integration_tests/test_vlm_models.py
@@ -19,7 +19,11 @@
# - openai api supports server-side image download, api catalog does not
# - ChatNVIDIA does client side download to simulate the same behavior
# - ChatNVIDIA will automatically read local files and convert them to base64
+# - openai api uses {"image_url": {"url": "..."}}
+# where api catalog uses {"image_url": "..."}
#
+
+
@pytest.mark.parametrize(
"content",
[
@@ -54,3 +58,6 @@ def test_vlm_model(
response = chat.invoke([HumanMessage(content=content)])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
+
+ for token in chat.stream([HumanMessage(content=content)]):
+ assert isinstance(token.content, str)
diff --git a/libs/ai-endpoints/tests/unit_tests/conftest.py b/libs/ai-endpoints/tests/unit_tests/conftest.py
index 9abdd6b0..8925a6ad 100644
--- a/libs/ai-endpoints/tests/unit_tests/conftest.py
+++ b/libs/ai-endpoints/tests/unit_tests/conftest.py
@@ -1,4 +1,5 @@
import pytest
+import requests_mock
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings, NVIDIARerank
@@ -12,3 +13,8 @@
)
def public_class(request: pytest.FixtureRequest) -> type:
return request.param
+
+
+@pytest.fixture
+def empty_v1_models(requests_mock: requests_mock.Mocker) -> None:
+ requests_mock.get("https://integrate.api.nvidia.com/v1/models", json={"data": []})
diff --git a/libs/ai-endpoints/tests/unit_tests/test_bind_tools.py b/libs/ai-endpoints/tests/unit_tests/test_bind_tools.py
new file mode 100644
index 00000000..4876f5f1
--- /dev/null
+++ b/libs/ai-endpoints/tests/unit_tests/test_bind_tools.py
@@ -0,0 +1,64 @@
+import warnings
+from typing import Any
+
+import pytest
+from langchain_core.pydantic_v1 import BaseModel, Field
+from langchain_core.tools import tool
+
+from langchain_nvidia_ai_endpoints import ChatNVIDIA
+
+
+def xxyyzz_func(a: int, b: int) -> int:
+ """xxyyzz two numbers"""
+ return 42
+
+
+class xxyyzz_cls(BaseModel):
+ """xxyyzz two numbers"""
+
+ a: int = Field(..., description="First number")
+ b: int = Field(..., description="Second number")
+
+
+@tool
+def xxyyzz_tool(
+ a: int = Field(..., description="First number"),
+ b: int = Field(..., description="Second number"),
+) -> int:
+ """xxyyzz two numbers"""
+ return 42
+
+
+@pytest.mark.parametrize(
+ "tools, choice",
+ [
+ ([xxyyzz_func], "xxyyzz_func"),
+ ([xxyyzz_cls], "xxyyzz_cls"),
+ ([xxyyzz_tool], "xxyyzz_tool"),
+ ],
+ ids=["func", "cls", "tool"],
+)
+def test_bind_tool_and_select(tools: Any, choice: str) -> None:
+ warnings.filterwarnings(
+ "ignore", category=UserWarning, message=".*not known to support tools.*"
+ )
+ ChatNVIDIA(api_key="BOGUS").bind_tools(tools=tools, tool_choice=choice)
+
+
+@pytest.mark.parametrize(
+ "tools, choice",
+ [
+ ([], "wrong"),
+ ([xxyyzz_func], "wrong_xxyyzz_func"),
+ ([xxyyzz_cls], "wrong_xxyyzz_cls"),
+ ([xxyyzz_tool], "wrong_xxyyzz_tool"),
+ ],
+ ids=["empty", "func", "cls", "tool"],
+)
+def test_bind_tool_and_select_negative(tools: Any, choice: str) -> None:
+ warnings.filterwarnings(
+ "ignore", category=UserWarning, message=".*not known to support tools.*"
+ )
+ with pytest.raises(ValueError) as e:
+ ChatNVIDIA(api_key="BOGUS").bind_tools(tools=tools, tool_choice=choice)
+ assert "not found in the tools list" in str(e.value)
diff --git a/libs/ai-endpoints/tests/unit_tests/test_chat_models.py b/libs/ai-endpoints/tests/unit_tests/test_chat_models.py
index 643f9dd5..1c6ffa72 100644
--- a/libs/ai-endpoints/tests/unit_tests/test_chat_models.py
+++ b/libs/ai-endpoints/tests/unit_tests/test_chat_models.py
@@ -18,6 +18,6 @@ def test_integration_initialization() -> None:
ChatNVIDIA(model="meta/llama2-70b", nvidia_api_key="nvapi-...")
-def test_unavailable() -> None:
+def test_unavailable(empty_v1_models: None) -> None:
with pytest.raises(ValueError):
ChatNVIDIA(model="not-a-real-model")
diff --git a/libs/ai-endpoints/tests/unit_tests/test_messages.py b/libs/ai-endpoints/tests/unit_tests/test_messages.py
new file mode 100644
index 00000000..3bbbaa92
--- /dev/null
+++ b/libs/ai-endpoints/tests/unit_tests/test_messages.py
@@ -0,0 +1,36 @@
+import requests_mock
+from langchain_core.messages import AIMessage
+
+from langchain_nvidia_ai_endpoints import ChatNVIDIA
+
+
+def test_invoke_aimessage_content_none(requests_mock: requests_mock.Mocker) -> None:
+ requests_mock.post(
+ "https://integrate.api.nvidia.com/v1/chat/completions",
+ json={
+ "id": "mock-id",
+ "created": 1234567890,
+ "object": "chat.completion",
+ "model": "mock-model",
+ "choices": [
+ {
+ "index": 0,
+ "message": {"role": "assistant", "content": "WORKED"},
+ }
+ ],
+ },
+ )
+
+ empty_aimessage = AIMessage(content="EMPTY")
+ empty_aimessage.content = None # type: ignore
+
+ llm = ChatNVIDIA()
+ response = llm.invoke([empty_aimessage])
+ request = requests_mock.request_history[0]
+ assert request.method == "POST"
+ assert request.url == "https://integrate.api.nvidia.com/v1/chat/completions"
+ message = request.json()["messages"][0]
+ assert "content" in message and message["content"] != "EMPTY"
+ assert "content" in message and message["content"] is None
+ assert isinstance(response, AIMessage)
+ assert response.content == "WORKED"
diff --git a/libs/ai-endpoints/tests/unit_tests/test_parallel_tool_calls.py b/libs/ai-endpoints/tests/unit_tests/test_parallel_tool_calls.py
new file mode 100644
index 00000000..7f1abd2d
--- /dev/null
+++ b/libs/ai-endpoints/tests/unit_tests/test_parallel_tool_calls.py
@@ -0,0 +1,160 @@
+import warnings
+
+import pytest
+import requests_mock
+from langchain_core.messages import AIMessage
+
+from langchain_nvidia_ai_endpoints import ChatNVIDIA
+
+
+@pytest.fixture(autouse=True)
+def mock_v1_models(requests_mock: requests_mock.Mocker) -> None:
+ requests_mock.get(
+ "https://integrate.api.nvidia.com/v1/models",
+ json={
+ "data": [
+ {
+ "id": "magic-model",
+ "object": "model",
+ "created": 1234567890,
+ "owned_by": "OWNER",
+ "root": "magic-model",
+ },
+ ]
+ },
+ )
+
+
+def test_invoke_parallel_tool_calls(requests_mock: requests_mock.Mocker) -> None:
+ requests_mock.post(
+ "https://integrate.api.nvidia.com/v1/chat/completions",
+ json={
+ "id": "cmpl-100f0463deb8421480ab18ed32cb2581",
+ "object": "chat.completion",
+ "created": 1721154188,
+ "model": "magic-model",
+ "choices": [
+ {
+ "index": 0,
+ "message": {
+ "role": "assistant",
+ "content": None,
+ "tool_calls": [
+ {
+ "id": "chatcmpl-tool-7980a682cc24446a8da9148c2c3e37ce",
+ "type": "function",
+ "function": {
+ "name": "xxyyzz",
+ "arguments": '{"a": 11, "b": 3}',
+ },
+ },
+ {
+ "id": "chatcmpl-tool-299964d0c5fe4fc1b917c8eaabd1cda2",
+ "type": "function",
+ "function": {
+ "name": "zzyyxx",
+ "arguments": '{"a": 11, "b": 5}',
+ },
+ },
+ ],
+ },
+ "logprobs": None,
+ "finish_reason": "tool_calls",
+ "stop_reason": None,
+ }
+ ],
+ "usage": {
+ "prompt_tokens": 194,
+ "total_tokens": 259,
+ "completion_tokens": 65,
+ },
+ },
+ )
+
+ warnings.filterwarnings("ignore", r".*Found magic-model in available_models.*")
+ llm = ChatNVIDIA(model="magic-model")
+ response = llm.invoke(
+ "What is 11 xxyyzz 3 zzyyxx 5?",
+ )
+ assert isinstance(response, AIMessage)
+ assert len(response.tool_calls) == 2
+ tool_call0 = response.tool_calls[0]
+ assert tool_call0["name"] == "xxyyzz"
+ assert tool_call0["args"] == {"b": 3, "a": 11}
+ tool_call1 = response.tool_calls[1]
+ assert tool_call1["name"] == "zzyyxx"
+ assert tool_call1["args"] == {"b": 5, "a": 11}
+
+
+def test_stream_parallel_tool_calls_A(requests_mock: requests_mock.Mocker) -> None:
+ response_contents = "\n\n".join(
+ [
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":null},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"id":"call_ID0","type":"function","function":{"name":"xxyyzz","arguments":""}}]},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"{\\"a\\""}}]},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":": 11,"}}]},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":" \\"b\\": "}}]},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"3}"}}]},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"id":"call_ID1","type":"function","function":{"name":"zzyyxx","arguments":""}}]},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"{\\"a\\""}}]},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":": 5, "}}]},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"\\"b\\": 3"}}]},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"}"}}]},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"chatcmpl-ID0","object":"chat.completion.chunk","created":1721155403,"model":"magic-model","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"tool_calls"}]}', # noqa: E501
+ "data: [DONE]",
+ ]
+ )
+
+ requests_mock.post(
+ "https://integrate.api.nvidia.com/v1/chat/completions",
+ text=response_contents,
+ )
+
+ warnings.filterwarnings("ignore", r".*Found magic-model in available_models.*")
+ llm = ChatNVIDIA(model="magic-model")
+ generator = llm.stream(
+ "What is 11 xxyyzz 3 zzyyxx 5?",
+ )
+ response = next(generator)
+ for chunk in generator:
+ response += chunk
+ assert isinstance(response, AIMessage)
+ assert len(response.tool_calls) == 2
+ tool_call0 = response.tool_calls[0]
+ assert tool_call0["name"] == "xxyyzz"
+ assert tool_call0["args"] == {"b": 3, "a": 11}
+ tool_call1 = response.tool_calls[1]
+ assert tool_call1["name"] == "zzyyxx"
+ assert tool_call1["args"] == {"b": 3, "a": 5}
+
+
+def test_stream_parallel_tool_calls_B(requests_mock: requests_mock.Mocker) -> None:
+ response_contents = "\n\n".join(
+ [
+ 'data: {"id":"cmpl-call_ID0","object":"chat.completion.chunk","created":1721155320,"model":"magic-model","choices":[{"index":0,"delta":{"role":"assistant","content":null},"logprobs":null,"finish_reason":null}]}', # noqa: E501
+ 'data: {"id":"cmpl-call_ID0","object":"chat.completion.chunk","created":1721155320,"model":"magic-model","choices":[{"index":0,"delta":{"role":null,"content":null,"tool_calls":[{"index":0,"id":"chatcmpl-tool-IDA","type":"function","function":{"name":"xxyyzz","arguments":"{\\"a\\": 11, \\"b\\": 3}"}},{"index":1,"id":"chatcmpl-tool-IDB","type":"function","function":{"name":"zzyyxx","arguments":"{\\"a\\": 11, \\"b\\": 5}"}}]},"logprobs":null,"finish_reason":"tool_calls","stop_reason":null}]}', # noqa: E501
+ "data: [DONE]",
+ ]
+ )
+
+ requests_mock.post(
+ "https://integrate.api.nvidia.com/v1/chat/completions",
+ text=response_contents,
+ )
+
+ warnings.filterwarnings("ignore", r".*Found magic-model in available_models.*")
+ llm = ChatNVIDIA(model="magic-model")
+ generator = llm.stream(
+ "What is 11 xxyyzz 3 zzyyxx 5?",
+ )
+ response = next(generator)
+ for chunk in generator:
+ response += chunk
+ assert isinstance(response, AIMessage)
+ assert len(response.tool_calls) == 2
+ tool_call0 = response.tool_calls[0]
+ assert tool_call0["name"] == "xxyyzz"
+ assert tool_call0["args"] == {"b": 3, "a": 11}
+ tool_call1 = response.tool_calls[1]
+ assert tool_call1["name"] == "zzyyxx"
+ assert tool_call1["args"] == {"b": 5, "a": 11}
diff --git a/libs/ai-endpoints/tests/unit_tests/test_ranking.py b/libs/ai-endpoints/tests/unit_tests/test_ranking.py
new file mode 100644
index 00000000..887ef3e9
--- /dev/null
+++ b/libs/ai-endpoints/tests/unit_tests/test_ranking.py
@@ -0,0 +1,73 @@
+from typing import Any, Literal, Optional
+
+import pytest
+from langchain_core.documents import Document
+from requests_mock import Mocker
+
+from langchain_nvidia_ai_endpoints import NVIDIARerank
+
+
+@pytest.fixture(autouse=True)
+def mock_v1_models(requests_mock: Mocker) -> None:
+ requests_mock.get(
+ "https://integrate.api.nvidia.com/v1/models",
+ json={
+ "data": [
+ {
+ "id": "mock-model",
+ "object": "model",
+ "created": 1234567890,
+ "owned_by": "OWNER",
+ }
+ ]
+ },
+ )
+
+
+@pytest.fixture(autouse=True)
+def mock_v1_ranking(requests_mock: Mocker) -> None:
+ requests_mock.post(
+ "https://integrate.api.nvidia.com/v1/ranking",
+ json={
+ "rankings": [
+ {"index": 0, "logit": 4.2},
+ ]
+ },
+ )
+
+
+@pytest.mark.parametrize(
+ "truncate",
+ [
+ None,
+ "END",
+ "NONE",
+ ],
+)
+def test_truncate(
+ requests_mock: Mocker,
+ truncate: Optional[Literal["END", "NONE"]],
+) -> None:
+ truncate_param = {}
+ if truncate:
+ truncate_param = {"truncate": truncate}
+ client = NVIDIARerank(model="mock-model", **truncate_param)
+ response = client.compress_documents(
+ documents=[Document(page_content="Nothing really.")], query="What is it?"
+ )
+
+ assert len(response) == 1
+
+ assert requests_mock.last_request is not None
+ request_payload = requests_mock.last_request.json()
+ if truncate is None:
+ assert "truncate" not in request_payload
+ else:
+ assert "truncate" in request_payload
+ assert request_payload["truncate"] == truncate
+
+
+@pytest.mark.parametrize("truncate", [True, False, 1, 0, 1.0, "START", "BOGUS"])
+def test_truncate_invalid(truncate: Any) -> None:
+ with pytest.raises(ValueError):
+ NVIDIARerank(truncate=truncate)