diff --git a/libs/vertexai/langchain_google_vertexai/__init__.py b/libs/vertexai/langchain_google_vertexai/__init__.py index bd057448..7c0444f1 100644 --- a/libs/vertexai/langchain_google_vertexai/__init__.py +++ b/libs/vertexai/langchain_google_vertexai/__init__.py @@ -1,3 +1,110 @@ +""" +## langchain-google-vertexai + +This module contains the LangChain integrations for Google Cloud generative models. + +## Installation + +```bash +pip install -U langchain-google-vertexai +``` + +## Chat Models + +`ChatVertexAI` class exposes models such as `gemini-pro` and `chat-bison`. + +To use, you should have Google Cloud project with APIs enabled, and configured +credentials. Initialize the model as: + +```python +from langchain_google_vertexai import ChatVertexAI + +llm = ChatVertexAI(model_name="gemini-pro") +llm.invoke("Sing a ballad of LangChain.") +``` + +You can use other models, e.g. `chat-bison`: + +```python +from langchain_google_vertexai import ChatVertexAI + +llm = ChatVertexAI(model_name="chat-bison", temperature=0.3) +llm.invoke("Sing a ballad of LangChain.") +``` + +#### Multimodal inputs + +Gemini vision model supports image inputs when providing a single chat message. Example: + +```python +from langchain_core.messages import HumanMessage +from langchain_google_vertexai import ChatVertexAI + +llm = ChatVertexAI(model_name="gemini-pro-vision") +# example +message = HumanMessage( + content=[ + { + "type": "text", + "text": "What's in this image?", + }, # You can optionally provide text parts + {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}}, + ] +) +llm.invoke([message]) +``` + +The value of `image_url` can be any of the following: + +- A public image URL +- An accessible gcs file (e.g., "gcs://path/to/file.png") +- A base64 encoded image (e.g., ``) + +## Embeddings + +You can use Google Cloud's embeddings models as: + +```python +from langchain_google_vertexai import VertexAIEmbeddings + +embeddings = VertexAIEmbeddings() +embeddings.embed_query("hello, world!") +``` + +## LLMs + +You can use Google Cloud's generative AI models as Langchain LLMs: + +```python +from langchain_core.prompts import PromptTemplate +from langchain_google_vertexai import ChatVertexAI + +template = \"""Question: {question} + +Answer: Let's think step by step.\""" +prompt = PromptTemplate.from_template(template) + +llm = ChatVertexAI(model_name="gemini-pro") +chain = prompt | llm + +question = "Who was the president of the USA in 1994?" +print(chain.invoke({"question": question})) +``` + +You can use Gemini and Palm models, including code-generations ones: + +```python + +from langchain_google_vertexai import VertexAI + +llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3) + +question = "Write a python function that checks if a string is a valid email address" + +output = llm(question) +``` +""" + from google.cloud.aiplatform_v1beta1.types import ( FunctionCallingConfig, FunctionDeclaration,