From 1c026ab07250497a8f8e99e51405c8416f2e4426 Mon Sep 17 00:00:00 2001 From: Luke Sneeringer Date: Fri, 11 Aug 2017 09:51:04 -0700 Subject: [PATCH] Make the Spanner README better. (#3791) --- spanner/README.rst | 129 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 129 insertions(+) diff --git a/spanner/README.rst b/spanner/README.rst index 1580c27a71a0f..109b9289923ab 100644 --- a/spanner/README.rst +++ b/spanner/README.rst @@ -12,3 +12,132 @@ Quick Start .. code-block:: console $ pip install --upgrade google-cloud-spanner + + +Authentication +-------------- + +With ``google-cloud-python`` we try to make authentication as painless as +possible. Check out the `Authentication section`_ in our documentation to +learn more. You may also find the `authentication document`_ shared by all +the ``google-cloud-*`` libraries to be helpful. + +.. _Authentication section: https://google-cloud-python.readthedocs.io/en/latest/core/auth.html +.. _authentication document: https://github.com/GoogleCloudPlatform/gcloud-common/tree/master/authentication + + +Using the API +------------- + +Cloud Spanner is the world’s first fully managed relational database service +to offer both strong consistency and horizontal scalability for +mission-critical online transaction processing (OLTP) applications. With Cloud +Spanner you enjoy all the traditional benefits of a relational database; but +unlike any other relational database service, Cloud Spanner scales +horizontally to hundreds or thousands of servers to handle the biggest +transactional workloads. (`About Cloud Spanner`_) + +.. _About Cloud Spanner: https://cloud.google.com/spanner/ + + +Executing Arbitrary SQL in a Transaction +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Generally, to work with Cloud Spanner, you will want a transaction. The +preferred mechanism for this is to create a single function, which executes +as a callback to ``database.run_in_transaction``: + +.. code:: python + + # First, define the function that represents a single "unit of work" + # that should be run within the transaction. + def update_anniversary(transaction, person_id, unix_timestamp): + # The query itself is just a string. + # + # The use of @parameters is recommended rather than doing your + # own string interpolation; this provides protections against + # SQL injection attacks. + query = """UPDATE people + SET anniversary = @uxts + WHERE id = @person_id""" + + # When executing the SQL statement, the query and parameters are sent + # as separate arguments. When using parameters, you must specify + # both the parameters themselves and their types. + transaction.execute_sql( + query=query, + params={'person_id': person_id, 'uxts': unix_timestamp}, + param_types={ + 'person_id': types.INT64_PARAM_TYPE, + 'uxts': types.INT64_PARAM_TYPE, + }, + ) + + # Actually run the `update_anniversary` function in a transaction. + database.run_in_transaction(update_anniversary, + person_id=42, + unix_timestamp=1335020400, + ) + + +Select records using a Transaction +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Once you have a transaction object (such as the first argument sent to +``run_in_transaction``), reading data is easy: + +.. code:: python + + # Define a SELECT query. + query = """SELECT e.first_name, e.last_name, p.telephone + FROM employees as e, phones as p + WHERE p.employee_id == e.employee_id""" + + # Execute the query and return results. + result = transaction.execute_sql(query) + for row in result.rows: + print(row) + + +Insert records using a Transaction +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +To add one or more records to a table, use ``insert``: + +.. code:: python + + transaction.insert( + 'citizens', + columns=['email', 'first_name', 'last_name', 'age'], + values=[ + ['phred@exammple.com', 'Phred', 'Phlyntstone', 32], + ['bharney@example.com', 'Bharney', 'Rhubble', 31], + ], + ) + + +Update records using a Transaction +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +``Transaction.update`` updates one or more existing records in a table. Fails +if any of the records does not already exist. + +.. code:: python + + transaction.update( + 'citizens', + columns=['email', 'age'], + values=[ + ['phred@exammple.com', 33], + ['bharney@example.com', 32], + ], + ) + + +Learn More +---------- + +See the ``google-cloud-python`` API `Cloud Spanner documentation`_ to learn how +to connect to Cloud Spanner using this Client Library. + +.. _Cloud Spanner documentation: https://googlecloudplatform.github.io/google-cloud-python/latest/bigquery/usage.html