二分法查找,顾名思义,二分、二分就是分成两半呗。(有的翻译是折半法搜索
比如SICP里翻译的就是折半法搜索
)。它的复杂度为O(logn),在列表(已排序)中对给定值value
进行查找并输出其索引(index)值。
# -*- coding: utf-8 -*-
def binary_search(lst, value):
left, right = 0, len(lst) - 1
while left <= right:
middle = int((left + right) / 2) # 取`lst`中值索引
if value > lst[middle]:
left = middle + 1 # value大于`lst`中值,让左边界等于 middle + 1
elif value < lst[middle]:
right = middle - 1 # 类似上
else:
return "The value's index is {}".format(middle)
return "There is no {}".format(value)
if __name__ == '__main__':
lst = [1, 3, 5, 7, 9]
value = int(input("Please input the value(1-10): "))
print(binary_search(lst, value))
再来个递归(recursion)版的吧, 不作过多解释啦!
# -*- coding: utf-8 -*-
def binary_search_rec(lst, value, left, right):
middle = int((left + right) / 2)
if left > right:
return "I'm sorry, there is no {}".format(value)
if value < lst[middle]:
return binary_search_rec(lst, value, left, middle - 1)
elif value > lst[middle]:
return binary_search_rec(lst, value, middle + 1, right)
else:
return "Congratulations, the value's({}) index is {}".format(value, middle)
if __name__ == '__main__':
lst = [1, 3, 5, 7, 9]
left, right = 0, len(lst)
value = int(input("Please input the value: "))
print(binary_search_rec(lst, value, left, right))
没事。温习以下二分搜索!
被拼写错误折磨了一晚上。好好的lft被我写成ltf。debug生无可恋!
from random import randrange
def binary_search(seq, sit, lft, rgt):
mid = (lft + rgt) // 2
if lft > rgt:
return 'The seq no {}'.format(sit)
if sit > seq[mid]:
return binary_search(seq, sit, mid+1, rgt)
elif sit < seq[mid]:
return binary_search(seq, sit, lft, mid-1)
else:
return 'The {} in the seq and the station is {}'.format(sit, mid)
if __name__ == '__main__':
seq = [1, 4, 6, 8, 9, 12, 44, 56]
lft, rgt = 0, len(seq)
print(binary_search(seq, 4, lft, rgt))
昨天面试,面试官出了一道算法题:
有一个数组,其内元素先递增后递减,请找出其中的最大值.
对于我来说,当时第一个想起来的是,排序但是转念间就知道肯定不是最好的啦.于是就在哪儿想啊想,还是想不起来.气氛挺尴尬的,外面也挺冷的(电话面试,外面安静).我想不起来,面试小哥也不急着催我,最后也算是在小哥的提示下,想起了怎么做啦!(太感谢小哥啦, 小哥好人! 喂, 你们几个不许笑啊喂!)
当然是二分啦,下面是算法实现!
# coding=utf-8
def search_max_num(seq, left, right):
mid = (right + left) // 2
if left > right:
return seq[mid]
if seq[mid] > seq[mid - 1]:
return search_max_num(seq, mid + 1, right)
else:
return search_max_num(seq, left, mid - 1)
if __name__ == "__main__":
seq = [32, 55, 54, 54, 54, 54, 32, 15, 6, 4, 2, 1]
print(search_max_num(seq, 0, len(seq)))
class Solution: # array 二维列表
def find(self, target, array):
# write code here
for arr in array:
lft, rgt =0, len(arr) - 1
while lft <= rgt:
mid = (lft + rgt) // 2
if target > arr[mid]:
lft = mid + 1
elif target < arr[mid]:
rgt = mid - 1
else:
return arr[mid]
return 'No target'
target = 8 array = [ [1, 3, 5, 7, 9], [2, 4, 6, 8, 10] ] solution = Solution() solution.find(target, array)