Skip to content

Latest commit

 

History

History
301 lines (255 loc) · 8.75 KB

豆瓣电影Top250 爬虫.md

File metadata and controls

301 lines (255 loc) · 8.75 KB

爬取豆瓣电影top250。


2016-11-04 更新

使用 mongoDB 存储

本次更新 抓取电影的如下简单信息

  • 电影名
  • 封面
  • 评分
  • 评价人数
  • quote
  • 链接

# coding=utf-8

import logging
import re
import aiohttp
import asyncio
from bs4 import BeautifulSoup
from pymongo import MongoClient


class DouBanCrawl():

    def __init__(self, url):
        self.url = url

    async def fetch(self, url, headers):
        res = await aiohttp.request('GET', url)
        body = res.read()
        return (await body)

    def infos_get(self, html, name=None):
        soup = BeautifulSoup(html, 'lxml')
        scores = soup.select('.rating_num')
        scores = [score.text for score in scores]
        quotes = soup.select('p.quote > span')
        quotes = [quote.text for quote in quotes]
        pattern = r"https://movie.douban.com/subject/\w+/"
        hrefs = re.findall(pattern, str(html))[::2]
        title_list = soup.select('div.pic > a')
        try:
            titles = [re.findall(r'alt="(.*?)"', str(title))[0]
                      for title in title_list]
            img_links = [re.findall(r'src="(.*?)"', str(src))[0]
                         for src in title_list]
        except IndexError:
            pass
        return img_links, titles, scores, quotes, hrefs

    async def save_info(self, page):
        url = self.url.format(page)
        # print(url)
        with await sem:
            html = await self.fetch(url, headers)
        img_links, titles, scores, quotes, hrefs = self.infos_get(html)
        for infos in zip(img_links, titles, scores, quotes, hrefs):
            info = {'img': infos[0],
                    'name': infos[1],
                    'score': infos[2],
                    'quote': infos[3],
                    'href': infos[4]
                    }
            count = coll.find({"name": infos[1]}).count()
            if count == 0:
                coll.insert(info)


if __name__ == '__main__':
    url = 'https://movie.douban.com/top250?start={}&filter='
    headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 \
                (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36'}
    client = MongoClient('localhost', 27017)
    db = client.movies
    coll = db.coll
    douban = DouBanCrawl(url)
    pages = range(0, 250, 25)
    sem = asyncio.Semaphore(4)  # 限制协程并发量
    loop = asyncio.get_event_loop()
    f = asyncio.wait([douban.save_info(page) for page in pages])
    loop.run_until_complete(f)  # %time 为Ipython 自带功能模块
    print('Done')

以下为以前内容

1. 单线程版

# -*- coding: utf-8 -*-

import requests
import re
from threading import Thread
from bs4 import BeautifulSoup as bs

def fetch(url):
    s = requests.Session()
    s.headers.update({"user-agent": user_agent})
    return s.get(url)
    
def title_get(url):
    try:
        result = fetch(url)
    except requests.exceptions.RequestException:
        return False
    html = bs(result.text, 'lxml')
    title_list = html.select('div.pic > a > img')
     '''
    title_list中的元素格式如下 e.g: 
     <img alt="这个杀手不太冷" class="" src="https://img3.doubanio.com
     /view/movie_poster_cover/ipst/public/p511118051.jpg"/
    '''
    try:
        title = [re.findall(r'alt="(.*?)"', str(title))[0] for title in title_list]
    except IndexError:
        pass
    return title
    
def not_use_thread():
    for page in range(0, 250, 25):
        url = 'https://movie.douban.com/top250?start={}&filter='.format(page)
        title_get(url)
        
if __name__ == '__main__':
    user_agent = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 \
                (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36'
    %time not_use_thread() # 我使用的Ipython %time是其自带的模块 下面是其输出!
    
OutCPU times: user 1.11 s, sys: 8 ms, total: 1.12 s
Wall time: 3.58 s

2. 多线程版

# -*- coding: utf-8 -*-

import requests
import re
from threading import Thread
from bs4 import BeautifulSoup as bs

def fetch(url):
    s = requests.Session()
    s.headers.update({"user-agent": user_agent})
    return s.get(url)
    
def title_get(url):
    try:
        result = fetch(url)
    except requests.exceptions.RequestException:
        return False
    html = bs(result.text, 'lxml')
    title_list = html.select('div.pic > a > img')
    try:
        title = [re.findall(r'alt="(.*?)"', str(title))[0] for title in title_list] 
    except IndexError:
        pass
    return title
    
def use_thread():
    threads = []
    for page in range(0, 250, 25):
        url = 'https://movie.douban.com/top250?start={}&filter='.format(page)
        t = Thread(target=title_get, args=(url, ))
        t.setDaemon(True)
        threads.append(t)
        t.start()
        
    for t in threads:
        t.join()
        
if __name__ == '__main__':
    user_agent = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 \
                (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36'
    %time use_thread()
    
OutCPU times: user 1.16 s, sys: 172 ms, total: 1.33 s
Wall time: 1.28 s

使用线程池

线程的创建和销毁是一个比较重的开销。所以,使用线程池,重用线程池中的线程!

def use_thread_pool():
    url = 'https://movie.douban.com/top250?start={}&filter='
    urls = [url.format(page) for page in range(0, 250, 25)]
    pool = ThreadPool(7)
    pool.map(title_get, urls)
    pool.close()
    pool.join()
        
OutCPU times: user 1.23 s, sys: 152 ms, total: 1.38 s
Wall time: 1.29 s

再加上一个异步的吧

3. 异步版

此版本使用的是异步库asyncio和对其进行深度封装的库aiohttp

# coding=utf-8

import re
import aiohttp
import asyncio
from bs4 import BeautifulSoup

async def get(url, headers):
    res = await aiohttp.request('GET', url)
    body = res.read()
    return (await body)

def get_title(html, name=None):
    soup = BeautifulSoup(html, 'lxml')
    title_list = soup.select('div.pic > a > img')
    try:
        title = [re.findall(r'alt="(.*?)"', str(title))[0] for title in title_list]
    except IndexError:
        pass
    return title
        

async def print_title(page):
    url = 'https://movie.douban.com/top250?start={}&filter='.format(page)
    with await sem:
        html = await get(url, headers)
    title = get_title(html)
#    print('{} {}'.format(page, title))
    
if __name__ == '__main__':
    headers = {'User-Agent':'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 \
                (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36'}
    pages = list(range(0, 250, 25))
    sem = asyncio.Semaphore(5) # 限制并发量
    loop = asyncio.get_event_loop()
    f = asyncio.wait([print_title(page) for page in pages])
    %time loop.run_until_complete(f)
    
Out: CPU times: user 984 ms, sys: 28 ms, total: 1.01 s
Wall time: 1.67 s

4. 使用下 Gevent 看看效果如何。

# coding=utf-8

import re
import requests
import gevent
from gevent.pool import Pool
from bs4 import BeautifulSoup as bs


def fetch(url):
    s = requests.Session()
    s.headers.update({"user-agent": user_agent})
    return s.get(url)


def title_get(url):
    try:
        result = fetch(url)
    except requests.exceptions.RequestException:
        return False
    html = bs(result.text, 'lxml')
    title_list = html.select('div.pic > a > img')
    '''
       title_list中的元素格式如下 e.g:
        <img alt="这个杀手不太冷" class="" src="https://img3.doubanio.com
        /view/movie_poster_cover/ipst/public/p511118051.jpg"/
    '''
    try:
        title = [re.findall(r'alt="(.*?)"', str(title))[0]
                 for title in title_list]
    except IndexError:
        pass
    return title


if __name__ == '__main__':
    user_agent = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 \
                (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36'
    url = 'https://movie.douban.com/top250?start={}&filter='
    urls = [url.format(page) for page in range(0, 250, 25)]
    # %time gevent.joinall([gevent.spawn(title_get, url) for url in urls])
    pool = Pool(1000)
    %time pool.map(title_get, urls)

CPU times: user 960 ms, sys: 32 ms, total: 992 ms
Wall time: 3.67 s

总结

以上测试时间基于笔者电脑的配置和网络情况, 因人而异!

  1. 单线程和多线程的对比,可以看到,使用多线程后速度提升了3倍。
  2. 使用线程池后,在限制线程数的状态下,依然有着不错的速度!
  3. 使用异步虽然在这里并没有多大的优势相对于多线程来说,但是当请求量很大时,就能显示出异步的强大了。在这里就不做过多赘述了!
  4. 我也不明白为啥使用 gevent 后的速度尽然是这个这样子, 晕!!!