forked from qfgaohao/pytorch-ssd
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_ssd_live_demo.py
83 lines (74 loc) · 3.21 KB
/
run_ssd_live_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from pytorch_ssd.ssd.vgg_ssd import create_vgg_ssd, create_vgg_ssd_predictor
from pytorch_ssd.ssd.mobilenetv1_ssd import create_mobilenetv1_ssd, create_mobilenetv1_ssd_predictor
from pytorch_ssd.ssd.mobilenetv1_ssd_lite import create_mobilenetv1_ssd_lite, create_mobilenetv1_ssd_lite_predictor
from pytorch_ssd.ssd.squeezenet_ssd_lite import create_squeezenet_ssd_lite, create_squeezenet_ssd_lite_predictor
from pytorch_ssd.ssd.mobilenet_v2_ssd_lite import create_mobilenetv2_ssd_lite, create_mobilenetv2_ssd_lite_predictor
from pytorch_ssd.utils.misc import Timer
import cv2
import sys
if len(sys.argv) < 4:
print('Usage: python run_ssd_example.py <net type> <model path> <label path> [video file]')
sys.exit(0)
net_type = sys.argv[1]
model_path = sys.argv[2]
label_path = sys.argv[3]
if len(sys.argv) >= 5:
cap = cv2.VideoCapture(sys.argv[4]) # capture from file
else:
cap = cv2.VideoCapture(0) # capture from camera
cap.set(3, 1920)
cap.set(4, 1080)
class_names = [name.strip() for name in open(label_path).readlines()]
num_classes = len(class_names)
if net_type == 'vgg16-ssd':
net = create_vgg_ssd(len(class_names), is_test=True)
elif net_type == 'mb1-ssd':
net = create_mobilenetv1_ssd(len(class_names), is_test=True)
elif net_type == 'mb1-ssd-lite':
net = create_mobilenetv1_ssd_lite(len(class_names), is_test=True)
elif net_type == 'mb2-ssd-lite':
net = create_mobilenetv2_ssd_lite(len(class_names), is_test=True)
elif net_type == 'sq-ssd-lite':
net = create_squeezenet_ssd_lite(len(class_names), is_test=True)
else:
print("The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite.")
sys.exit(1)
net.load(model_path)
if net_type == 'vgg16-ssd':
predictor = create_vgg_ssd_predictor(net, candidate_size=200)
elif net_type == 'mb1-ssd':
predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200)
elif net_type == 'mb1-ssd-lite':
predictor = create_mobilenetv1_ssd_lite_predictor(net, candidate_size=200)
elif net_type == 'mb2-ssd-lite':
predictor = create_mobilenetv2_ssd_lite_predictor(net, candidate_size=200)
elif net_type == 'sq-ssd-lite':
predictor = create_squeezenet_ssd_lite_predictor(net, candidate_size=200)
else:
print("The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite.")
sys.exit(1)
timer = Timer()
while True:
ret, orig_image = cap.read()
if orig_image is None:
continue
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
timer.start()
boxes, labels, probs = predictor.predict(image, 10, 0.4)
interval = timer.end()
print('Time: {:.2f}s, Detect Objects: {:d}.'.format(interval, labels.size(0)))
for i in range(boxes.size(0)):
box = boxes[i, :]
label = f"{class_names[labels[i]]}: {probs[i]:.2f}"
cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 4)
cv2.putText(orig_image, label,
(box[0]+20, box[1]+40),
cv2.FONT_HERSHEY_SIMPLEX,
1, # font scale
(255, 0, 255),
2) # line type
cv2.imshow('annotated', orig_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()