forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pybind.h
213 lines (185 loc) · 7.73 KB
/
pybind.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#pragma once
#include <torch/csrc/python_headers.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/symbol.h>
#include <c10/util/irange.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/utils/pybind.h>
#include <pybind11/functional.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
namespace torch::jit {
// This is a variant of shared_ptr that "sees through" a wrapper.
// We use it to convert Value, Node, Block and node to "wrapped" Python
// values. When we destruct the C++ object, the wrapper's pointer will
// be set to 0 and any future dereferencing will throw. We need this
// because the Python objects may hang around after the C++ object
// has already been destroyed.
// This also needs the magic type_caster below, which is from the
// workaround offered in https://github.com/pybind/pybind11/issues/2751
template <typename T>
class unwrapping_shared_ptr {
static_assert(
std::is_same_v<T, torch::jit::Value> ||
std::is_same_v<T, torch::jit::Node> ||
std::is_same_v<T, torch::jit::Block>,
"unwrapping type only defined for Graph object types");
private:
std::shared_ptr<torch::jit::Wrap<T>> impl;
public:
unwrapping_shared_ptr() : impl({}) {}
explicit unwrapping_shared_ptr(T* p) : impl(p->wrap()) {
impl->clear_cb = &clear_registered_instances;
}
T* get() const {
if (!impl->elem) {
throw std::logic_error("has been invalidated");
}
return impl->elem;
}
// we need to disable the overloaded & for PyBind11 < 2.3 due.
// see https://github.com/pybind/pybind11/pull/1435
#if (PYBIND11_VERSION_MAJOR > 2) || \
((PYBIND11_VERSION_MAJOR == 2) && (PYBIND11_VERSION_MINOR >= 3))
T** operator&() {
if (!impl->elem) {
throw std::logic_error("has been invalidated");
}
return &(impl->elem);
}
#endif
};
} // namespace torch::jit
PYBIND11_DECLARE_HOLDER_TYPE(T, torch::jit::unwrapping_shared_ptr<T>, true)
namespace pybind11::detail {
#define CREATE_UNWRAPPING_CASTER(Class) \
template <> \
struct type_caster<Class> : public type_caster_base<Class> { \
public: \
using type = Class; \
using holder_type = torch::jit::unwrapping_shared_ptr<Class>; \
\
bool load(handle src, bool convert) { \
return load_impl<type_caster<Class>>(src, convert); \
} \
\
explicit operator type*() { \
return static_cast<type*>(value); \
} \
explicit operator type&() { \
return *static_cast<type*>(value); \
} \
\
protected: \
friend class type_caster_generic; \
\
bool load_value(const value_and_holder& v_h) { \
if (v_h.holder_constructed()) { \
value = v_h.template holder<holder_type>().get(); \
return true; \
} else { \
throw cast_error( \
"Unable to cast from non-held to held instance (#Class& to Holder<#Class>)"); \
} \
} \
}
CREATE_UNWRAPPING_CASTER(torch::jit::Node);
CREATE_UNWRAPPING_CASTER(torch::jit::Value);
CREATE_UNWRAPPING_CASTER(torch::jit::Block);
#undef CREATE_UNWRAPPING_CASTER
template <>
struct type_caster<torch::jit::IValue> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(torch::jit::IValue, _("IValue"));
bool load(handle src, bool) {
try {
value = torch::jit::toTypeInferredIValue(src);
return true;
} catch (std::exception& e) {
return false;
}
}
static handle cast(
torch::jit::IValue src,
return_value_policy /* policy */,
handle /* parent */) {
return torch::jit::toPyObject(std::move(src)).release();
}
};
template <>
struct type_caster<torch::jit::Symbol> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(torch::jit::Symbol, _("Symbol"));
bool load(handle src, bool) {
// TODO: Is there a way to py::cast that doesn't raise an exception on
// failure? Can we catch pybind11::cast_error here instead?
std::string src_str;
try {
src_str = py::cast<std::string>(src);
} catch (std::exception& e) {
return false;
}
value = torch::jit::Symbol::fromQualString(src_str);
return true;
}
static handle cast(
torch::jit::Symbol src,
return_value_policy /* policy */,
handle /* parent */) {
return py::cast(std::string(src.toQualString()), return_value_policy::copy)
.release();
}
};
template <>
struct type_caster<torch::jit::AttributeKind> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(torch::jit::AttributeKind, _("AttributeKind"));
bool load(handle src, bool) {
return false;
}
static handle cast(
torch::jit::AttributeKind src,
return_value_policy /* policy */,
handle /* parent */) {
return py::cast(
std::string(torch::jit::toString(src)),
return_value_policy::copy)
.release();
}
};
// See https://github.com/pybind/pybind11/issues/637
using ListCasterBase = pybind11::detail::
list_caster<std::vector<torch::jit::Node*>, torch::jit::Node*>;
template <>
struct type_caster<std::vector<torch::jit::Node*>> : ListCasterBase {
static handle cast(
const std::vector<torch::jit::Node*>& src,
return_value_policy,
handle parent) {
return ListCasterBase::cast(src, return_value_policy::reference, parent);
}
static handle cast(
const std::vector<torch::jit::Node*>* src,
return_value_policy pol,
handle parent) {
return cast(*src, pol, parent);
}
};
} // namespace pybind11::detail
namespace torch::jit {
static inline py::tuple tuple_tail(const py::tuple& tup) {
py::tuple r(tup.size() - 1);
for (const auto i : c10::irange(1, tup.size())) {
r[i - 1] = tup[i];
}
return r;
}
} // namespace torch::jit