From a58250ac12e07d08d2420ab4f4fe0dc33858612c Mon Sep 17 00:00:00 2001 From: Andrey Velichkevich Date: Tue, 23 Jul 2024 15:24:11 +0100 Subject: [PATCH] Refactor Model and Dataset configs Signed-off-by: Andrey Velichkevich --- .../2170-kubeflow-training-v2/README.md | 372 ++++++++++-------- 1 file changed, 213 insertions(+), 159 deletions(-) diff --git a/docs/proposals/2170-kubeflow-training-v2/README.md b/docs/proposals/2170-kubeflow-training-v2/README.md index 494795f7cb..7f34927153 100644 --- a/docs/proposals/2170-kubeflow-training-v2/README.md +++ b/docs/proposals/2170-kubeflow-training-v2/README.md @@ -271,7 +271,7 @@ type TrainJobSpec struct { TrainingRuntimeRef *TrainingRuntimeRef `json:"trainingRuntimeRef"` // Parameters that data scientists can override - TrainerConfig *TrainerConfig `json:"trainerConfig,omitempty"` + Trainer *Trainer `json:"trainer,omitempty"` // Configuration for training dataset DatasetConfig *DatasetConfig `json:"datasetConfig,omitempty"` @@ -315,7 +315,7 @@ This table explain rationale for each `TrainJob` parameter: - TrainerConfig + Trainer Configuration for the Trainer such as image, number of nodes, accelerators. @@ -360,7 +360,7 @@ metadata: spec: trainingRuntimeRef: name: torch-distributed-multi-node - trainerConfig: + trainer: image: docker.io/custom-training command: - torchrun train.py @@ -418,17 +418,22 @@ spec: trainingRuntimeRef: name: torch-tune-llama-7b datasetConfig: - s3: - bucket: datasets - path: custom-datasets/yelp-review + storageUri: s3://dataset/custom-dataset/yelp-review + parameters: + split: train[:5000] + modelConfig: + input: + storageUri: hf://yelp-review-full + output: + storageUri: s3://trained-model ``` -### The Trainer Config API +### The Trainer API -The `TrainerConfig` represents the APIs that data scientists can use to configure trainer settings: +The `Trainer` represents the APIs that data scientists can use to configure trainer settings: ```golang -type TrainerConfig struct { +type Trainer struct { // Docker image for the Trainer. Image string `json:"image,omitempty"` @@ -455,11 +460,11 @@ type TrainerConfig struct { } ``` -The following table explains how `TrainingRuntime` parameters will be overridden with `TrainerConfig`. +The following table explains how `TrainingRuntime` parameters will be overridden with `Trainer`. - @@ -509,110 +514,53 @@ The `DatasetConfig` represents the APIs that data scientists can use to configur ```golang type DatasetConfig struct { - // One of the following can be set. - HFDatasetProvider *kubeflowv1.HFDatasetProvider `json:"huggingface,omitempty"` + // Storage uri for the dataset provider. + StorageUri string `json:"storageUri"` - S3DatasetProvider *kubeflowv1.S3DatasetProvider `json:"s3,omitempty"` + // Custom parameters for the dataset initializer. + Parameters *[string]string `json:"parameters,omitempty"` - // (Optional). We can support the Iceberg dataset using PyIceberg. - IcebergDatasetProvider *kubeflowv1.IcebergDatasetProvider `json:"iceberg,omitempty"` -} - -type HFDatasetProvider struct { - // Path to the HF dataset. For example: yelp-review-full - RepoId string `json:"repoId"` - - // Whether the dataset needs to be splitted: train/val. E.g. split=train[:50000] - Split string `json:"split,omitempty"` - - // Secret must contain HF_TOKEN secret. - // If the secret object contains more than one secret, all secrets are passed. - AccessTokenSecretRef corev1.SecretReference `json:"accessToken,omitempty"` + // Reference to the secrets to access dataset. + SecretRef corev1.SecretReference `json:"secretRef,omitempty"` } +``` +Initially we will support the following dataset providers: -type S3DatasetProvider struct { - // S3 endpoint. - EndpointUrl string `json:"endpointUrl,omitempty"` +- **S3:** `storageUri: s3://bucket-name/path/dataset` +- **HuggingFace:** `storageUri: hf://repo-id` - // Name of the S3 bucket. - BucketName string `json:bucketName` +Parameters will be converted to the environment variables for the `dataset-initializer` container +in the `Initializer` Job. - // Path to the dataset. All files will be downloaded in that path. - Path string `json:path` +For example: - // Secret must contain AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY secret. - // If the secret object contains more than one secret, all secrets are passed. - // Otherwise, IRSA can be used to access S3. - AccessTokenSecretRef corev1.SecretReference `json:"accessToken,omitempty"` -} +```yaml +datasetConfig: + storageUri: s3://datasets/yelp-review + parameters: + endpointUrl: s3.custom.com ``` -The following tables explains how `TrainingRuntime` parameters will be overridden with the -`DatasetConfig`. - -All parameters will be set for this container: +Will be converted to: ```yaml -.spec.replicatedJobs[name='Initializer'].template.spec.template.spec.containers[name=dataset-initializer] +replicatedJobs: + - name: Initializer + template: + spec: + template: + spec: + containers: + - name: dataset-initializer + image: docker.io/kubeflow/dataset-initializer + env: + - name: STORAGE_URI + value: s3://dataset/yelp-review + - name: ENDPOINT_URL + value: s3.custom.com ``` -#### The HuggingFace Provider - -For the HuggingFace provider environment variable `PROVIDER=hf`. - -
TrainerConfig Parameter + Trainer Parameter TrainingRuntime Parameter
- - - - - - - - - - - - -
DatasetConfig Parameter - TrainingRuntime Parameter -
.huggingface.repoId - .env[REPO_ID] -
.huggingface.split - .env[SPLIT] -
- -#### The S3 Provider - -For the S3 provider environment variable `PROVIDER=s3`. - - - - - - - - - - - - - - - - - - -
DatasetConfig Parameter - TrainingRuntime Parameter -
.s3.endpointUrl - .env[ENDPOINT_URL] -
.s3.bucketName - .env[BUCKET_NAME] -
.s3.path - .env[PATH] -
- ### The Model Config API The `ModelConfig` represents the APIs that data scientists can use to configure pre-trained model @@ -620,59 +568,171 @@ input and output location. ```golang type ModelConfig struct { - // One of the following can be set. - HFModelProvider *kubeflowv1.HFModelProvider `json:"huggingface,omitempty"` + // Configuration for pre-trained model. + Input *InputModel `json:"input,omitempty"` - // Potential output location for fine-tuned/trained model. - OutputArtifact string + // Configuration for trained model. + Output *OutputModel `json:"output,omitempty"` } +type InputModel struct { + // Storage uri for the model provider. + StorageUri string `json:"storageUri"` -type HFModelProvider struct { - // Path to the pre-trained model. google-bert/bert-base-uncased - RepoID string `json:"repoID"` + // Custom parameters for the model initializer. + Parameters *[string]string `json:"parameters,omitempty"` - // TODO (andreyvelich): Do we want to support any Transformer ? - TransformerType string `json:"transformerType,omitempty"` + // Reference to the secrets to access model. + SecretRef corev1.SecretReference `json:"secretRef,omitempty"` +} - // Secret must contain HF_TOKEN secret. - // If the secret object contains more than one secret, all secrets are passed. - AccessTokenSecretRef corev1.SecretReference `json:"accessToken,omitempty"` +type OutputModel struct { + // Storage uri for the model exported. + StorageUri string `json:"storageUri"` + + // Custom parameters for the model exporter. + Parameters *[string]string `json:"parameters,omitempty"` + + // Reference to the secrets to export model. + SecretRef corev1.SecretReference `json:"secretRef,omitempty"` } ``` -The following table explains how `TrainingRuntime` parameters will be overridden with `ModelConfig`. +#### The Input Model API + +Initially we will support the following model providers: + +- **HuggingFace:** `storageUri: hf://model-name` + +Parameters will be converted to the environment variables for the `model-initializer` container +in the `Initializer` Job. -All parameters will be set for this container: +For example: ```yaml -.spec.replicatedJobs[name='Initializer'].template.spec.template.spec.containers[name=model-initializer] +modelConfig: + storageUri: hf://bert-based-cased + parameters: + transformerType: AutoModelForCausalLM ``` -#### The HuggingFace Provider +Will be converted to: -For the HuggingFace provider environment variable `PROVIDER=hf`. +```yaml +replicatedJobs: + - name: Initializer + template: + spec: + template: + spec: + containers: + - name: model-initializer + image: docker.io/kubeflow/model-initializer + env: + - name: STORAGE_URI + value: hf://bert-based-cased + - name: TRANSFORMER_TYPE + value: AutoModelForCausalLM +``` - - - - - - - - - - - - - -
DatasetConfig Parameter - TrainingRuntime Parameter -
.huggingface.repoId - .env[REPO_ID] -
.huggingface.split - .env[SPLIT] -
+#### The Output Model API + +After initial implementation of `TrainJob` and `TrainingRuntime`, we will support ability to export +the trained model. The following runtime can be implemented: + +```yaml +apiVersion: kubeflow.org/v2alpha1 +kind: ClusterTrainingRuntime +metadata: + name: torch-tune-llama-7b-export +spec: + numNodes: 1 + startupPolicy: + startupPolicyOrder: InOrder + replicatedJobs: + - name: Initializer + template: + spec: + template: + spec: + containers: + - name: dataset-initializer + image: docker.io/kubeflow/dataset-initializer + env: + - name: STORAGE_URI + value: hf://tatsu-lab/alpaca + volumeMounts: + - mountPath: /workspace/dataset + name: dataset-initializer + - name: model-initializer + image: docker.io/kubeflow/model-initializer + env: + - name: STORAGE_URI + value: hf://meta-llama/Llama-2-7b + volumeMounts: + - mountPath: /workspace/model + name: model-initializer + volumes: + - name: dataset-initializer + persistentVolumeClaim: + claimName: dataset-initializer + - name: model-initializer + persistentVolumeClaim: + claimName: model-initializer + - name: Node + template: + spec: + template: + spec: + containers: + - name: trainer + image: docker.io/kubeflow/llm-trainer + env: + - name: MASTER_ADDR + value: "pytorch-node-0-0.pytorch" + - name: MASTER_PORT + value: 29400 + - name: LORA_CONFIG + value: | + {"peft_type": "LORA", "r": 8, "lora_alpha": 16} + command: + - torchrun hf_llm_training.py + resources: + limits: + nvidia.com/gpu: 2 + volumeMounts: + - mountPath: /workspace/dataset + name: dataset-initializer + - mountPath: /workspace/pre-trained-model + name: model-initializer + - mountPath: /workspace/adapters + name: model-exporter + volumes: + - name: dataset-initializer + persistentVolumeClaim: + claimName: dataset-initializer + - name: model-initializer + persistentVolumeClaim: + claimName: model-initializer + - name: model-exporter + persistentVolumeClaim: + claimName: model-exporter + - name: Exporter + template: + spec: + template: + spec: + containers: + - name: model-exporter + image: docker.io/kubeflow/model-exporter + volumeMounts: + - mountPath: /workspace/adapters + name: model-exporter + volumes: + - name: model-exporter + persistentVolumeClaim: + claimName: model-exporter +``` ### The Pod Spec Overrides APIs @@ -703,7 +763,7 @@ type PodSpecOverride struct { } // Override for each container. -// Parameters from TrainerConfig, DatasetConfig, and ModelConfig will take precedence. +// Parameters from Trainer, DatasetConfig, and ModelConfig will take precedence. type Container struct { // Name for the container. @@ -740,7 +800,7 @@ metadata: spec: trainingRuntimeRef: name: pytorch-distributed-gpu - trainerConfig: + trainer: image: docker.io/custom-training podSpecOverrides: - targetReplicatedJobs: @@ -805,7 +865,7 @@ type TrainingRuntime struct { JobSetSpec *batchv1.JobSetSpec `json:",inline"` // For gang-scheduling using volcano or scheduler plugins, supported for all frameworks. - GangScheduler *kubeflowv1.GangScheduler `json:"gangScheduler,omitempty"` + GangScheduler *GangScheduler `json:"gangScheduler,omitempty"` } // One of the specs can be selected. @@ -836,7 +896,7 @@ type GangSchedulerPlugin string const ( GangSchedulerPluginVolcano GangSchedulerPlugin = "volcano" - GangSchedulerPluginSP GangSchedulerPlugin = "scheduler-plugins" + GangSchedulerPlugins GangSchedulerPlugin = "scheduler-plugins" ) ``` @@ -971,7 +1031,7 @@ metadata: spec: trainingRuntimeRef: name: torch-distributed-multi-node - trainerConfig: + trainer: resourcesPerNode: requests: nvidia.com/gpu: 1 @@ -1102,20 +1162,16 @@ spec: - name: dataset-initializer image: docker.io/kubeflow/dataset-initializer env: - - name: DATASET_PROVIDER - value: hf - - name: REPO_ID - value: tatsu-lab/alpaca + - name: STORAGE_URI + value: hf://tatsu-lab/alpaca volumeMounts: - mountPath: /workspace/dataset name: dataset-initializer - name: model-initializer image: docker.io/kubeflow/model-initializer env: - - name: MODEL_PROVIDER - value: hf - - name: REPO_ID - value: meta-llama/Llama-2-7b + - name: STORAGE_URI + value: hf://meta-llama/Llama-2-7b - name: TRANSFORMER_TYPE value: AutoModelForCausalLM volumeMounts: @@ -1188,20 +1244,16 @@ spec: - name: dataset-initializer image: docker.io/kubeflow/dataset-initializer env: - - name: DATASET_PROVIDER - value: hf - - name: REPO_ID - value: tatsu-lab/alpaca + - name: STORAGE_URI + value: hf://tatsu-lab/alpaca volumeMounts: - mountPath: /workspace/dataset name: dataset-initializer - name: model-initializer image: docker.io/kubeflow/model-initializer env: - - name: MODEL_PROVIDER - value: hf - - name: REPO_ID - value: google/gemma-7b + - name: STORAGE_URI + value: hf://google/gemma-7b - name: TRANSFORMER_TYPE value: AutoModelForCausalLM volumeMounts: @@ -1277,6 +1329,8 @@ spec: containers: - name: mpi-launcher image: docker.io/mpi-launch + command: + - mpirun -np 5 --host mpi-simple.default.svc - name: Node template: spec: