-
Notifications
You must be signed in to change notification settings - Fork 168
/
build_image.sh
executable file
·113 lines (93 loc) · 3.44 KB
/
build_image.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#!/bin/bash
# Copyright 2021 The KubeEdge Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Reset in case getopts has been used previously in the shell
OPTIND=1
usage()
{
echo ""
echo "Usage: $0 -r repository dir_1 ... dir_n"
echo -e "\t-r The repository parameters allows to select a private Docker repository to upload the images to."
echo -e "\tThe script expects a list of Sedna example to build (joint_inference, federated_learning, etc..).
\tMultiple example can be built at the same time by passing a list of directories such as: dir_1 dir_2 ...
\tIf no directory is specified, the script will automatically build all available examples."
exit 1 # Exit script after printing help
}
while getopts "r:" opt
do
case "$opt" in
r ) IMAGE_REPO="$OPTARG" ;;
? ) usage ;; # Print usage in case parameter is non-existent
esac
done
shift $((OPTIND-1))
[ "${1:-}" = "--" ] && shift
type=$@
if [ -z "$type" ]
then
echo "No example directory/s specified, building all example images.."
type="all"
fi
if [ -z "$IMAGE_REPO" ]
then
echo "Using default Docker hub"
IMAGE_REPO="kubeedge"
fi
cd "$(dirname "${BASH_SOURCE[0]}")"
IMAGE_TAG=${IMAGE_TAG:-v0.5.0}
EXAMPLE_REPO_PREFIX=${IMAGE_REPO}/sedna-example-
dockerfiles_multiedgeinference=(
multi-edge-inference-pedestrian-tracking-feature-extraction.Dockerfile
# multi-edge-inference-pedestrian-tracking-gpu-feature-extraction.Dockerfile
# multi-edge-inference-pedestrian-tracking-gpu-videoanalytics.Dockerfile
multi-edge-inference-pedestrian-tracking-reid.Dockerfile
multi-edge-inference-pedestrian-tracking-videoanalytics.Dockerfile
)
dockerfiles_federated_learning=(
federated-learning-mistnet-yolo-aggregator.Dockerfile
federated-learning-mistnet-yolo-client.Dockerfile
federated-learning-surface-defect-detection-aggregation.Dockerfile
federated-learning-surface-defect-detection-train.Dockerfile
)
dockerfiles_joint_inference=(
joint-inference-helmet-detection-big.Dockerfile
joint-inference-helmet-detection-little.Dockerfile
)
dockerfiles_lifelong_learning=(
lifelong-learning-atcii-classifier.Dockerfile
)
dockerfiles_incremental_learning=(
incremental-learning-helmet-detection.Dockerfile
)
# Iterate over the input folders and build them sequentially.
for tp in ${type[@]}; do
if [[ "$tp" == "all" ]]; then
dockerfiles+=(
"${dockerfiles_multiedgeinference[@]}"
"${dockerfiles_federated_learning[@]}"
"${dockerfiles_joint_inference[@]}"
"${dockerfiles_lifelong_learning[@]}"
"${dockerfiles_incremental_learning[@]}")
else
dfiles=dockerfiles_$tp[@]
dockerfiles+=("${!dfiles}")
fi
done
# Removing duplicate entries (if any)
dockerfiles=($(echo "${dockerfiles[@]}" | tr ' ' '\n' | sort -u))
for dockerfile in ${dockerfiles[@]}; do
echo "Building $dockerfile"
example_name=${dockerfile/.Dockerfile}
docker build -f $dockerfile -t ${EXAMPLE_REPO_PREFIX}${example_name}:${IMAGE_TAG} --label sedna=examples ..
done