forked from mamanain/recommendMe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RecEng.py
96 lines (71 loc) · 3.2 KB
/
RecEng.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
from scipy.sparse import csr_matrix
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.decomposition import TruncatedSVD
class Recommender:
def __init__(self, database):
self.database = database
def _build_matrix(self, build_type="groups", collection_name=""):
"""
build_type = "groups"/"ratings"
"""
users_arr = np.array([x["_id"] for x in self.database.get_all("User_Info")])
users_dict = {x: i for i, x in enumerate(users_arr)}
user_matr = []
info_matr = []
data_matr = []
# Different matrix type
# Group matrix
if build_type == "groups":
info_arr = []
for x in self.database.get_all("User_Info"):
for group in x['groups']:
info_arr.append(group)
user_matr.append(x['_id'])
info_matr.append(group)
data_matr.append(1)
info_arr = np.unique(info_arr)
# Ratings matrix
elif build_type == "ratings":
info_arr = []
for x in self.database.get_all(collection_name):
user = x["_id"]
del x["_id"]
for movie in x.keys():
info_arr.append(movie)
user_matr.append(user)
info_matr.append(movie)
data_matr.append(x[movie])
info_arr = np.unique(info_arr)
info_dict = {x: i for i, x in enumerate(info_arr)}
user_matr = np.array([users_dict[x] for x in user_matr])
info_matr = np.array([info_dict[x] for x in info_matr])
matr = csr_matrix((data_matr, (user_matr, info_matr)), shape=(len(users_dict), len(info_dict)))
return matr, users_dict, info_dict
def _get_most_similar_vectors(self, matrix, row_index, num_of_vectors=5):
"""
Get N most simular users
"""
simularities = cosine_similarity(matrix[row_index], matrix)
indexes = simularities.argsort()
return indexes[0][-num_of_vectors-1:-1]
def ratings_rec(self, user_id, return_num=10):
if not self.database.get_one(user_id, "User_Info"):
return []
matrix, users, movies = self._build_matrix("ratings", "ratings")
svd = TruncatedSVD(n_components=100)
svd.fit(matrix)
reverse_movies = {y: x for y, x in enumerate(movies)}
y = svd.inverse_transform(svd.transform(matrix[users[user_id]].todense()))
movies = []
for key, value in sorted(enumerate(y[0]), key=lambda x: -x[1])[:return_num]:
movies.append(self.database.get_one(int(reverse_movies[key]), "Movie_Info"))
return movies
def groups_rec(self, user_id, return_num=5):
matrix, users, groups = self._build_matrix("groups", "User_Info")
reverse_users = {y: x for y, x in enumerate(users)}
movies = []
for _id in reversed(self._get_most_similar_vectors(matrix, users[user_id], return_num)):
for movie in self.database.get_one(int(reverse_users[_id]), "User_Info")['movies']:
movies.append(self.database.get_one(movie, "Movie_Info"))
return movies