-
Notifications
You must be signed in to change notification settings - Fork 8
/
build_dataset.py
executable file
·128 lines (101 loc) · 5.18 KB
/
build_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import numpy as np
import argparse
import cv2
import os
import argparse
import random
import os
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--data-dir', default='data/dataset_raw',
help="Directory with the raw dataset")
parser.add_argument('-o', '--output-dir', default='data/64x64_dataset',
help="Where to write the new data")
parser.add_argument('-s', '--size', type=int, default=64,
help="Where to write the new data")
parser.add_argument('-c', '--confidence', type=float, default=0.5,
help="Confidence threshold to detect face")
parser.add_argument('--face-model', type=str, default="face_detector",
help="path to face detector model directory")
def extract_face(filename, output_dir, net, size, confidence_threshold):
image = cv2.imread(filename)
if image is None:
return
filename_out = filename.split('/')[-1].split('.')[0]
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(128, 128), mean=(104.0, 177.0, 123.0))
net.setInput(blob)
detections = net.forward()
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > confidence_threshold:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
try:
frame = image[startY:endY, startX:endX]
frame = cv2.resize(frame, (size, size), interpolation=cv2.INTER_AREA)
if i > 0:
image_out = os.path.join(output_dir, '%s_%s.jpg' % (filename_out, i))
else:
image_out = os.path.join(output_dir, '%s.jpg' % filename_out)
cv2.imwrite(image_out, frame)
except Exception as e:
print(e)
def app():
args = parser.parse_args()
assert os.path.isdir(args.data_dir), "Couldn't find the dataset at {}".format(args.data_dir)
prototxtPath = os.path.join(args.face_model, "deploy.prototxt")
weightsPath = os.path.join(args.face_model, "res10_300x300_ssd_iter_140000.caffemodel")
net = cv2.dnn.readNet(prototxtPath, weightsPath)
# Define the data directories
train_mask_dir = os.path.join(args.data_dir, 'train/Mask')
train_non_mask_dir = os.path.join(args.data_dir, 'train/Non Mask')
os.makedirs(train_mask_dir, exist_ok=True)
os.makedirs(train_non_mask_dir, exist_ok=True)
test_mask_dir = os.path.join(args.data_dir, 'test/Mask')
test_non_mask_dir = os.path.join(args.data_dir, 'test/Non Mask')
os.makedirs(test_mask_dir, exist_ok=True)
os.makedirs(test_non_mask_dir, exist_ok=True)
# Get the filenames in each directory (train and test)
filenames_mask = os.listdir(train_mask_dir)
filenames_mask = [os.path.join(train_mask_dir, f) for f in filenames_mask if f.endswith('.jpg')]
filenames_non_mask = os.listdir(train_non_mask_dir)
filenames_non_mask = [os.path.join(train_non_mask_dir, f) for f in filenames_non_mask if f.endswith('.jpg')]
test_filenames_mask = os.listdir(test_mask_dir)
test_filenames_mask = [os.path.join(test_mask_dir, f) for f in test_filenames_mask if f.endswith('.jpg')]
test_filenames_non_mask = os.listdir(test_non_mask_dir)
test_filenames_non_mask = [os.path.join(test_non_mask_dir, f) for f in test_filenames_non_mask if f.endswith('.jpg')]
# Split the images into 80% train and 20% dev
# Make sure to always shuffle with a fixed seed so that the split is reproducible
random.seed(161311)
filenames_mask.sort()
filenames_non_mask.sort()
random.shuffle(filenames_mask)
random.shuffle(filenames_non_mask)
split_mask = int(0.8 * len(filenames_mask))
train_filenames_mask = filenames_mask[:split_mask]
dev_filenames_mask = filenames_mask[split_mask:]
split_non_mask = int(0.8 * len(filenames_non_mask))
train_filenames_non_mask = filenames_non_mask[:split_non_mask]
dev_filenames_non_mask = filenames_non_mask[split_non_mask:]
filenames = {'train/Mask': train_filenames_mask,
'train/Non Mask': train_filenames_non_mask,
'test/Mask': test_filenames_mask,
'test/Non Mask': test_filenames_non_mask,
'validation/Mask': dev_filenames_mask,
'validation/Non Mask': dev_filenames_non_mask}
# Preprocess train, dev and test
for split in filenames.keys():
output_dir_split = os.path.join(args.output_dir, split)
os.makedirs(output_dir_split, exist_ok=True)
print("Processing {} data, saving preprocessed data to {}".format(split, output_dir_split))
for filename in tqdm(filenames[split]):
extract_face(filename, output_dir_split, net, args.size, args.confidence)
print("Done building dataset")
if __name__ == '__main__':
app()