-
Notifications
You must be signed in to change notification settings - Fork 7
/
main_metric.py
136 lines (115 loc) · 4.69 KB
/
main_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import random
import shutil
import cv2
import lpips
from PIL import Image
from tqdm import tqdm
import numpy as np
import argparse
import torch.utils.data
import torchvision.transforms as transforms
from trainer import Trainer
from utils import get_config, unloader, get_model_list
def fid(real, fake, gpu):
print('Calculating FID...')
print('real dir: {}'.format(real))
print('fake dir: {}'.format(fake))
#command = 'python -m pytorch_fid {} {} --gpu {}'.format(real, fake, gpu)
command = 'python -m pytorch_fid {} {}'.format(real, fake)
os.system(command)
def LPIPS(root):
print('Calculating LPIPS...')
loss_fn_vgg = lpips.LPIPS(net='vgg')
model = loss_fn_vgg
model.cuda()
files = os.listdir(root)
data = {}
for file in tqdm(files, desc='loading data'):
cls = file.split('_')[0]
idx = int(file.split('_')[1][:-4])
img = lpips.im2tensor(cv2.resize(lpips.load_image(os.path.join(root, file)), (32, 32)))
data.setdefault(cls, {})[idx] = img
classes = set([file.split('_')[0] for file in files])
res = []
for cls in tqdm(classes):
temp = []
files_cls = [file for file in files if file.startswith(cls + '_')]
for i in range(0, len(files_cls) - 1, 1):
# print(i, end='\r')
for j in range(i + 1, len(files_cls), 1):
img1 = data[cls][i].cuda()
img2 = data[cls][j].cuda()
d = model(img1, img2, normalize=True)
temp.append(d.detach().cpu().numpy())
res.append(np.mean(temp))
print(np.mean(res))
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str,default="results/flower_wavegan_base_index")
parser.add_argument('--dataset', type=str, default="flower")
parser.add_argument('--real_dir', type=str, default="results/flower_wavegan_base_index/reals")
parser.add_argument('--fake_dir', type=str,default="results/flower_wavegan_base_index/tests")
parser.add_argument('--ckpt', type=str, default="gen_00100000.pt")
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--n_sample_test', type=int, default=3)
args = parser.parse_args()
conf_file = os.path.join(args.name, 'configs.yaml')
config = get_config(conf_file)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
transform_list = [transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
transform = transforms.Compose(transform_list)
if __name__ == '__main__':
SEED = 0
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
real_dir = args.real_dir
fake_dir = os.path.join(args.name, args.fake_dir)
print('real dir: ', real_dir)
print('fake dir: ', fake_dir)
if os.path.exists(fake_dir):
shutil.rmtree(fake_dir)
os.makedirs(fake_dir, exist_ok=True)
data = np.load(config['data_root'])
if args.dataset == 'flower':
data = data[85:]
num = 10
elif args.dataset == 'animal':
data = data[119:]
num = 10
elif args.dataset == 'vggface':
data = data[1802:]
num = 30
data_for_gen = data[:, :num, :, :, :]
data_for_fid = data[:, num:, :, :, :]
if not os.path.exists(real_dir):
os.makedirs(real_dir, exist_ok=True)
for cls in tqdm(range(data_for_fid.shape[0]), desc='preparing real images'):
for i in range(data_for_fid.shape[1]):
idx = i
real_img = data_for_fid[cls, idx, :, :, :]
if args.dataset == 'vggface':
real_img *= 255
real_img = Image.fromarray(np.uint8(real_img))
real_img.save(os.path.join(real_dir, '{}_{}.png'.format(cls, str(i).zfill(3))), 'png')
if os.path.exists(fake_dir):
trainer = Trainer(config)
if args.ckpt:
last_model_name = os.path.join(args.name, 'checkpoints', args.ckpt)
else:
last_model_name = get_model_list(os.path.join(args.name, 'checkpoints'), "gen")
trainer.load_ckpt(last_model_name)
trainer.cuda()
trainer.eval()
for cls in tqdm(range(data_for_gen.shape[0]), desc='generating fake images'):
for i in range(128):
idx = np.random.choice(data_for_gen.shape[1], args.n_sample_test)
imgs = data_for_gen[cls, idx, :, :, :]
imgs = torch.cat([transform(img).unsqueeze(0) for img in imgs], dim=0).unsqueeze(0).cuda()
fake_x = trainer.generate(imgs)
output = unloader(fake_x[0].cpu())
output.save(os.path.join(fake_dir, '{}_{}.png'.format(cls, str(i).zfill(3))), 'png')
fid(real_dir, fake_dir, args.gpu)
LPIPS(fake_dir)