diff --git a/.ci/docker/common/install_onnx.sh b/.ci/docker/common/install_onnx.sh index 65907a99f2572..b99ecac283d64 100755 --- a/.ci/docker/common/install_onnx.sh +++ b/.ci/docker/common/install_onnx.sh @@ -30,10 +30,9 @@ pip_install \ pip_install coloredlogs packaging -pip_install onnxruntime==1.18 -pip_install onnx==1.16.0 -# pip_install "onnxscript@git+https://github.com/microsoft/onnxscript@3e869ef8ccf19b5ebd21c10d3e9c267c9a9fa729" --no-deps -pip_install onnxscript==0.1.0.dev20240613 --no-deps +pip_install onnxruntime==1.18.1 +pip_install onnx==1.16.2 +pip_install onnxscript==0.1.0.dev20240831 --no-deps # required by onnxscript pip_install ml_dtypes diff --git a/test/onnx/dynamo/test_registry_dispatcher.py b/test/onnx/dynamo/test_registry_dispatcher.py index d782f94dd311d..8605b098d3005 100644 --- a/test/onnx/dynamo/test_registry_dispatcher.py +++ b/test/onnx/dynamo/test_registry_dispatcher.py @@ -8,18 +8,11 @@ import onnxscript # type: ignore[import] from onnxscript import BFLOAT16, DOUBLE, FLOAT, FLOAT16 # type: ignore[import] -from onnxscript.function_libs.torch_lib import ops # type: ignore[import] from onnxscript.onnx_opset import opset15 as op # type: ignore[import] import torch import torch.fx -from torch.onnx._internal.diagnostics import infra -from torch.onnx._internal.fx import ( - analysis, - diagnostics, - onnxfunction_dispatcher, - registration, -) +from torch.onnx._internal.fx import diagnostics, onnxfunction_dispatcher, registration from torch.testing._internal import common_utils @@ -84,60 +77,6 @@ def test_custom(x, y): [test_original, test_custom], ) - def test_unsupported_nodes_analysis_with_missing_aten_op(self): - # NOTE: simulate unsupported nodes - aten_mul_tensor = registration.OpName.from_name_parts( - namespace="aten", op_name="mul", overload="Tensor" - ) - aten_mul_default = registration.OpName.from_name_parts( - namespace="aten", op_name="mul" - ) - aten_add_tensor = registration.OpName.from_name_parts( - namespace="aten", op_name="add", overload="Tensor" - ) - aten_add_default = registration.OpName.from_name_parts( - namespace="aten", op_name="add" - ) - - self.registry._registry.pop(aten_mul_tensor) - self.registry._registry.pop(aten_mul_default) - self.registry._registry.pop(aten_add_tensor) - self.registry._registry.pop(aten_add_default) - - diagnostic_context = diagnostics.DiagnosticContext( - "torch.onnx.dynamo_export", torch.__version__ - ) - dispatcher = onnxfunction_dispatcher.OnnxFunctionDispatcher( - self.registry, diagnostic_context - ) - - graph: torch.fx.Graph = torch.fx.Graph() - x: torch.fx.Node = graph.create_node("placeholder", "x") - x.meta["val"] = torch.tensor(3.0) - b: torch.fx.Node = graph.create_node( - "call_function", target=torch.ops.aten.mul.Tensor, args=(x, x) - ) - c: torch.fx.Node = graph.create_node( - "call_function", target=torch.ops.aten.add.Tensor, args=(b, b) - ) - output: torch.fx.Node = graph.output(c) - module = torch.fx.GraphModule(torch.nn.Module(), graph) - - with self.assertRaises(infra.RuntimeErrorWithDiagnostic): - analysis.UnsupportedFxNodesAnalysis( - diagnostic_context, module, dispatcher - ).analyze(infra.levels.ERROR) - - try: - analysis.UnsupportedFxNodesAnalysis( - diagnostic_context, module, dispatcher - ).analyze(infra.levels.ERROR) - except infra.RuntimeErrorWithDiagnostic as e: - self.assertIn( - "Unsupported FX nodes: {'call_function': ['aten.mul.Tensor', 'aten.add.Tensor']}.", - e.diagnostic.message, - ) - @common_utils.instantiate_parametrized_tests class TestDispatcher(common_utils.TestCase): @@ -488,165 +427,5 @@ def test_first_custom_op( self.assertEqual(symbolic_fn, test_third_custom_op) -@common_utils.instantiate_parametrized_tests -class TestOpSchemaWrapper(common_utils.TestCase): - def setUp(self): - # overload type: optional dtype - self.onnx_function_new_full = ops.core.aten_new_full - self.onnx_function_new_full_dtype = ops.core.aten_new_full_dtype - - @common_utils.parametrize( - "inputs, attributes, assertion", - [ - common_utils.subtest( - ([torch.randn(3, 4), torch.randn(3, 4)], {"alpha": 2.0}, True), - name="perfect_match_with_kwargs", - ), - common_utils.subtest( - (["A", "B"], {}, False), - name="non_perfect_match_due_to_non_tensor_inputs", - ), - common_utils.subtest( - ([torch.randn(3, 4), torch.randn(3, 4), torch.randn(3, 4)], {}, False), - name="non_perfect_match_due_to_too_many_inputs", - ), - common_utils.subtest( - ([torch.randn(3, 4), torch.randn(3, 4)], {"wrong_kwargs": 2.0}, False), - name="non_perfect_match_due_to_wrong_kwargs", - ), - ], - ) - def test_perfect_match_inputs(self, inputs, attributes, assertion): - # OnnxFunction with default attributes - dummy_diagnostic = diagnostics.Diagnostic( - rule=diagnostics.rules.find_opschema_matched_symbolic_function, - level=diagnostics.levels.WARNING, - ) - op_schema_wrapper_add = onnxfunction_dispatcher._OnnxSchemaChecker( - ops.core.aten_add - ) - self.assertEqual( - op_schema_wrapper_add.perfect_match_inputs( - dummy_diagnostic, inputs, attributes - ), - assertion, - ) - - @common_utils.parametrize( - "inputs, kwargs, op, score", - [ - common_utils.subtest( - ([torch.randn(3, 4), torch.randn(3, 4)], {}, ops.core.aten_mul, 2), - name="match_2_inputs", - ), - common_utils.subtest( - ( - [ - torch.randint(0, 2, size=(3, 4), dtype=torch.int).bool(), - torch.randint(0, 2, size=(3, 4), dtype=torch.int).bool(), - ], - {}, - ops.core.aten_mul, - 0, - ), - name="match_0_inputs", - ), - common_utils.subtest( - ([torch.randn(3, 4), torch.randn(3, 4)], {}, ops.core.aten_mul_bool, 0), - name="match_0_inputs_bool", - ), - common_utils.subtest( - ( - [ - torch.randint(0, 2, size=(3, 4), dtype=torch.int).bool(), - torch.randint(0, 2, size=(3, 4), dtype=torch.int).bool(), - ], - {}, - ops.core.aten_mul_bool, - 2, - ), - name="match_2_inputs_bool", - ), - ], - ) - def test_matching_score_system_on_overload_dtypes(self, inputs, kwargs, op, score): - op_schema_wrapper = onnxfunction_dispatcher._OnnxSchemaChecker(op) - op_schema_wrapper._record_matching_score(inputs, kwargs) - self.assertEqual(op_schema_wrapper.match_score, score) - - @common_utils.parametrize( - "inputs, kwargs, op, score", - [ - common_utils.subtest( - ([torch.randn(3, 4), torch.tensor(3)], {}, ops.core.aten_new_full, 2), - name="match_2_inputs", - ), - common_utils.subtest( - ( - [torch.randn(3, 4), torch.tensor(3)], - {"dtype": 2}, # at this point, dtype should be converted to int - ops.core.aten_new_full_dtype, - 2, - ), - name="match_2_input_and_match_1_kwargs_optional", - ), - ], - ) - def test_matching_score_system_on_optional_dtypes(self, inputs, kwargs, op, score): - op_schema_wrapper = onnxfunction_dispatcher._OnnxSchemaChecker(op) - op_schema_wrapper._record_matching_score(inputs, kwargs) - self.assertEqual(op_schema_wrapper.match_score, score) - - @common_utils.parametrize( - "value, expected_onnx_str_dtype", - [ - common_utils.subtest( - (1, {"tensor(int64)", "tensor(int16)", "tensor(int32)"}), - name="all_ints", - ), - common_utils.subtest( - (1.0, {"tensor(float)", "tensor(double)", "tensor(float16)"}), - name="all_floats", - ), - common_utils.subtest( - (torch.tensor([True]), {"tensor(bool)"}), - name="bool", - ), - common_utils.subtest( - (torch.tensor([1], dtype=torch.int64), {"tensor(int64)"}), - name="int64", - ), - common_utils.subtest( - (torch.tensor([1], dtype=torch.int32), {"tensor(int32)"}), - name="int32", - ), - common_utils.subtest( - (torch.tensor([1], dtype=torch.int16), {"tensor(int16)"}), - name="int16", - ), - common_utils.subtest( - (torch.tensor([1], dtype=torch.float), {"tensor(float)"}), - name="float", - ), - common_utils.subtest( - (torch.tensor([1], dtype=torch.float16), {"tensor(float16)"}), - name="float16", - ), - common_utils.subtest( - (torch.tensor([1], dtype=torch.double), {"tensor(double)"}), - name="double", - ), - common_utils.subtest((None, set()), name="None"), # None allows no dtype - common_utils.subtest( - ([], set()), name="empaty_list" - ), # Empty list allows no dtype - ], - ) - def test_find_onnx_data_type(self, value, expected_onnx_str_dtype): - self.assertEqual( - onnxfunction_dispatcher._find_onnx_data_type(value), expected_onnx_str_dtype - ) - - if __name__ == "__main__": common_utils.run_tests() diff --git a/test/onnx/test_fx_op_consistency.py b/test/onnx/test_fx_op_consistency.py deleted file mode 100644 index 9972ea901722c..0000000000000 --- a/test/onnx/test_fx_op_consistency.py +++ /dev/null @@ -1,2076 +0,0 @@ -# Owner(s): ["module: onnx"] - -"""Test consistency between the output values of torch.onnx FX exported operators -and torch operators given the same inputs. - -Usage: - - 1. Test all operators: - - pytest test/onnx/test_fx_op_consistency.py - - 2. To run tests on a specific operator (e.g. torch.ceil): - - pytest test/onnx/test_fx_op_consistency.py -k ceil - pytest test/onnx/test_fx_op_consistency.py -k nn_functional_scaled_dot_product_attention - - 3. Set `CREATE_REPRODUCTION_REPORT=1` to create markdown files for reproduction of errors. E.g. - - CREATE_REPRODUCTION_REPORT=1 python -m pytest test/onnx/test_fx_op_consistency.py -k div_mode_int - - NOTE: Read more on Running and writing tests: - https://github.com/pytorch/pytorch/wiki/Running-and-writing-tests - -Note: - - 1. Please make sure pytest-subtests is installed. Otherwise, the sub-tests will be ignored. - - 2. Install pytest-xdist to run tests in parallel if runng all tests is the goal. - - 3. When new ops are supported, please scroll down to modify the EXPECTED_SKIPS_OR_FAILS_WITH_DTYPES and - TESTED_OPS lists. See "Modify this section" - -""" - -from __future__ import annotations - -import copy -import itertools -import os -from typing import ( - Any, - Callable, - Collection, - List, - Mapping, - Optional, - Tuple, - Type, - TYPE_CHECKING, - Union, -) - -import error_reproduction -import onnx_test_common -import parameterized -import pytest -import pytorch_test_common -from onnx_test_common import skip, skip_slow, xfail - -import torch -from torch.onnx._internal.diagnostics import _rules -from torch.testing._internal import ( - common_device_type, - common_methods_invocations, - common_utils, -) - - -if TYPE_CHECKING: - from torch.testing._internal.opinfo import core as opinfo_core - - -# NOTE: For ATen signature modifications that will break ONNX export, -# use **xfail_torchlib_forward_compatibility** and **skip_torchlib_forward_compatibility** instead of xfail or skip -# to make the signal apparent for maintainers. -def xfail_torchlib_forward_compatibility( - op_name: str, - variant_name: str = "", - *, - reason: str, - github_issue: str, - opsets: Optional[Collection[Union[int, Callable[[int], bool]]]] = None, - dtypes: Optional[Collection[torch.dtype]] = None, - matcher: Optional[Callable[[Any], bool]] = None, - enabled_if: bool = True, -): - """Prefer using this (xfail) over skip when possible. - - Only skip when the test is not failing consistently. - """ - return xfail( - op_name, - variant_name=variant_name, - reason=f"{reason}. GitHub Issue: {github_issue}", - opsets=opsets, - dtypes=dtypes, - matcher=matcher, - enabled_if=enabled_if, - ) - - -def skip_torchlib_forward_compatibility( - op_name: str, - variant_name: str = "", - *, - reason: str, - github_issue: str, - opsets: Optional[Collection[Union[int, Callable[[int], bool]]]] = None, - dtypes: Optional[Collection[torch.dtype]] = None, - matcher: Optional[Callable[[Any], Any]] = None, - enabled_if: bool = True, -): - """Prefer using xfail_torchlib_forward_compatibility over this (skip) when possible. - - Only skip when the test is not failing consistently. - """ - return skip( - op_name, - variant_name=variant_name, - reason=f"{reason}. GitHub Issue: {github_issue}", - opsets=opsets, - dtypes=dtypes, - matcher=matcher, - enabled_if=enabled_if, - ) - - -# fmt: off -# Turn off black formatting to keep the list compact - -# Expected failures for onnx export. -# The list should be sorted alphabetically by op name. -# Q: When should I use fixme vs vs skip vs xfail? -# A: Prefer xfail over skip when possible. -# 2a. If a test is now failing because of xpass, because some previous errors -# are now fixed, removed the corresponding xfail. -# 2b. If a test is not failing consistently, use skip. -# NOTE: EXPECTED_SKIPS_OR_FAILS_WITH_DTYPES only supports dtypes. If a matcher or model_type -# is needed, use the SKIP_XFAIL_SUBTESTS_WITH_MATCHER_AND_MODEL_TYPE list further down below. -EXPECTED_SKIPS_OR_FAILS_WITH_DTYPES: Tuple[onnx_test_common.DecorateMeta, ...] = ( - xfail( - "__getitem__", - reason="io_adaper doesn't support __getitem__ input slice(0, 3, None)", - ), - xfail( - "__radd__", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("Add", "bool"), - ), - xfail( - "__rmatmul__", - dtypes=(torch.float16,), - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "__rpow__", - dtypes=onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Pow", "int"), - ), - skip( - "_native_batch_norm_legit", - reason=onnx_test_common.reason_onnx_script_does_not_support("cpu is not supported: \ - https://github.com/microsoft/onnxscript/pull/1289") - ), - skip( - "_batch_norm_with_update", - dtypes=(torch.float16,), - reason="fixme: Assertion error: result mismatch and type error", - ), - xfail( - "_softmax_backward_data", - dtypes=(torch.float16,), - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "_unsafe_masked_index", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Where", "bool"), - ), - xfail( - "_unsafe_masked_index", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("_unsafe_masked_index", "complex64"), - ), - xfail( - "_unsafe_masked_index_put_accumulate", - reason="fixme: Status Message: updates tensor should have shape equal to " - "indices.shape[:-1] + data.shape[indices.shape[-1]:]", - ), - xfail( - "_unsafe_masked_index_put_accumulate", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Where", "bool"), - ), - xfail( - "add", dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Add") - ), - xfail( - "add", - dtypes=(torch.uint8, torch.int8, torch.int16,), - reason=onnx_test_common.reason_onnx_script_does_not_support( - "Add", "int8, int16, uint8 have type issue." - ), - ), - xfail( - "addbmm", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("Addbmm", "complex64") - ), - xfail( - "addmm", dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Addmm") - ), - xfail( - "addmm", - variant_name="decomposed", - dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Addmm") - ), - skip( - "addmm", dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("Addmm", "complex64 (core dump)") - ), - skip( - "addmm", - variant_name="decomposed", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("Addmm", "complex64 (core dump)") - ), - xfail( - "addr", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support( - "Addr", "bool" - ), - ), - xfail( - "addr", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("Addr", "complex64") - ), - xfail( - "alias_copy", - dtypes=(torch.int8, torch.uint8, torch.int16, torch.float64), - reason="OnnxExporterError: Failed to export model", - ), - xfail( - "allclose", - reason=onnx_test_common.reason_dynamo_does_not_support("Allclose") - ), - xfail( - "amax", - dtypes=(torch.int16, *onnx_test_common.BOOL_TYPES), - reason=onnx_test_common.reason_onnx_does_not_support("ReduceMin", "bool, int16"), - ), - xfail( - "amin", dtypes=(torch.int16, *onnx_test_common.BOOL_TYPES), - reason=onnx_test_common.reason_dynamo_does_not_support("ReduceMin", "bool, int16") - ), - xfail( - "aminmax", - dtypes=(torch.int16, *onnx_test_common.BOOL_TYPES), - reason=onnx_test_common.reason_onnx_does_not_support("ReduceMin", "bool, int16"), - ), - xfail( - "arange", - dtypes=(torch.uint8,), - reason=onnx_test_common.reason_onnx_script_does_not_support("Arange", "uint8, int8"), - ), - xfail( - "arange", - dtypes=(torch.int16, torch.int32), - reason="AssertionError: The values for attribute 'shape' do not match", - ), - xfail( - "argmax", - dtypes=( - torch.int16, - torch.int64, - ), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "ArgMax", "int16, int64" - ), - ), - xfail( - "argmin", - dtypes=( - torch.uint8, - torch.int8, - torch.int16, - torch.int64, - ), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "ArgMin", "uint8, int8, int16, int64" - ), - ), - xfail( - "argwhere", - reason="fixme: Assertion error: result mismatch", - ), - skip( - "as_strided", - variant_name="partial_views", - reason="ONNX doesn't have partial view for tensor; [PostInline][ORT] segfaults", - ), - xfail( - "atan2", - dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES, - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "baddbmm", - dtypes=( - torch.uint8, - torch.int8, - torch.int16, - ), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "Matmul", "uint8, int8, int16" - ), - ), - xfail( - "baddbmm", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("baddbmm", "complex64") - ), - xfail( - "bernoulli", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "bfloat16", - reason="fixme: ORT errors with RuntimeError: No corresponding Numpy type for Tensor Type.", - ), - xfail( - "bincount", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.bincount.default"), - ), - xfail( - "block_diag", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Block_diag", "complex"), - ), - xfail( - "bmm", - dtypes=( - torch.uint8, - torch.int8, - torch.int16, - ), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "Matmul", "uint8, int8, int16" - ), - ), - xfail( - "broadcast_shapes", - reason=onnx_test_common.reason_dynamo_does_not_support("output is int"), - ), - xfail( - "cauchy", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - skip( - "ceil", dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Ceil", "bool and int") - ), - xfail( - "chalf", - reason="fixme: ONNX shape type inference error: Invalid tensor data type 0." - ), - xfail( - "chunk", - dtypes=(torch.uint8, torch.int8, torch.int16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "Chunk", "uint8, int8, int16" - ), - ), - xfail( - "clamp", - dtypes=(torch.uint8, torch.int8, torch.int16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "Max", "uint8, int8, int16" - ), - ), - xfail( - "clamp_max", dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("Clamp_max", "bool") - ), - xfail( - "clamp_max", - dtypes=(torch.uint8, torch.int8, torch.int16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "Max", "uint8, int8, int16" - ), - ), - xfail( - "clamp_min", - dtypes=(torch.uint8, torch.int8, torch.int16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "Max", "uint8, int8, int16" - ), - ), - xfail( - "clamp_min", dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("Clamp_min", "bool") - ), - xfail( - "constant_pad_nd", - dtypes=(torch.int16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "Constant_pad_nd", "int16" - ), - ), - xfail( - "constant_pad_nd", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support( - "Constant_pad_nd", "complex64" - ), - ), - xfail( - "corrcoef", - reason=onnx_test_common.reason_dynamo_does_not_support( - "aten.equal.default" - ), - ), - xfail( - "cov", - reason=onnx_test_common.reason_dynamo_does_not_support( - "aten.equal.default" - ), - ), - xfail( - "cumsum", dtypes=onnx_test_common.BOOL_TYPES + (torch.uint8, torch.int8, torch.int16,), - reason=onnx_test_common.reason_onnx_does_not_support("Cumsum", "bool, uint8, int8, int16") - ), - xfail( - "combinations", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.masked.select"), - ), - xfail( - "diag", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Diagonal", "bool"), - ), - xfail( - "diagonal_copy", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Diagonal", "bool"), - ), - xfail( - "dot", dtypes=(torch.uint8, torch.int8, torch.int16,), - reason=onnx_test_common.reason_onnx_does_not_support("MatMul", "uint8, int8, int16") - ), - skip( - "dot", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("Dot", "complex64(core dump)"), - ), - xfail( - "empty", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason="fixme: kwargs dtpye=complex64 is not supported in ONNX." - ), - xfail( - "empty_strided", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "eq", - dtypes=(torch.uint8, torch.int8, torch.int16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Equal", "uint8, int8, int16"), - ), - xfail( - "equal", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.equal.default") - ), - xfail( - "exponential", - reason=onnx_test_common.reason_dynamo_does_not_support("exponential"), - ), - xfail( - "fft.fft", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "fft.fft2", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "fft.fftn", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "fft.ifft", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "fft.ifft2", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "fft.ifftn", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "fft.irfft", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "fft.irfft2", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "fft.irfftn", - reason=onnx_test_common.reason_onnx_script_does_not_support("aten._fft_r2c.default"), - ), - xfail( - "fft.rfft", - reason=onnx_test_common.reason_onnx_script_does_not_support("aten._fft_r2c.default"), - ), - xfail( - "fft.rfftn", - reason=onnx_test_common.reason_onnx_script_does_not_support("aten._fft_r2c.default"), - ), - xfail( - "fft.rfft2", - reason=onnx_test_common.reason_onnx_script_does_not_support("aten._fft_r2c.default"), - ), - xfail( - "floor", - dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Floor", "bool, int"), - ), - xfail( - "floor_divide", - dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Floor", "bool, int"), - ), - xfail( - "full", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("full", "complex64") - ), - xfail( - "full_like", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("full_like", "complex64") - ), - xfail( - "gather", - reason="GatherElements op: Rank of input 'data' needs to be equal to rank of input 'indices'" - ), - xfail( - "geometric", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "heaviside", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("Heaviside", "bool"), - ), - xfail( - "index_add", - dtypes=(torch.float16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("ScatterND", "int64, int32, bool"), - ), - xfail( - "index_fill", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("index_fill", "complex64") - ), - xfail( - "index_fill", - dtypes=onnx_test_common.INT_TYPES + onnx_test_common.BOOL_TYPES + onnx_test_common.FLOAT_TYPES, - reason="fixme: Constant input list has None. ONNXScript does not support None in constant list." - ), - xfail( - "index_put", - dtypes=onnx_test_common.BOOL_TYPES + (torch.float16,), - reason=onnx_test_common.reason_onnx_script_does_not_support("index_put", "bool"), - ), - xfail( - "index_put", - dtypes=(torch.uint8, torch.int8, torch.int16,), - reason=onnx_test_common.reason_onnx_script_does_not_support("Add", "int8, int16"), - ), - xfail( - "index_put", - dtypes=(torch.float16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("ScatterND", "float16"), - ), - xfail( - "isnan", - dtypes=onnx_test_common.INT_TYPES + onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("IsNaN", "int, bool"), - ), - xfail( - "istft", - reason=onnx_test_common.reason_dynamo_does_not_support("data-dependent"), - ), - xfail( - "item", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "lerp", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("lerp", "complex64") - ), - xfail( - "linalg.lstsq", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.linalg_lstsq.default"), - ), - xfail( - "linalg.lstsq", - variant_name="grad_oriented", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.linalg_lstsq.default"), - ), - xfail( - "linalg.matrix_power", - reason="fixme: The values for attribute 'shape' do not match: torch.Size([2, 2]) != torch.Size([2, 2, 2])." - ), - xfail( - "linalg.norm", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "linalg.norm", - variant_name="subgradients_at_zero", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "linalg.vecdot", - reason="fixme: Assertion error: result shape mismatch", - ), - xfail( - "linspace", - dtypes=(torch.int64, torch.int32,), - reason="fixme: Results do not match with PyTorch. https://github.com/microsoft/onnxscript/issues/854", - ), - xfail( - "linspace", - variant_name="tensor_overload", - dtypes=(torch.int64, torch.int32,), - reason="fixme: Results do not match with PyTorch. https://github.com/microsoft/onnxscript/issues/854", - ), - xfail( - "linspace", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("linspace", "complex64") - ), - xfail( - "linspace", - variant_name="tensor_overload", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("linspace", "complex64") - ), - xfail( - "log_normal", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "log_softmax", - dtypes=(torch.float16,), - reason="fixme: ORT optimizer error: https://github.com/microsoft/onnxruntime/issues/16438", - ), - xfail( - "log_softmax", - variant_name="with_dtype", - dtypes=(torch.float16,), - reason="fixme: ORT optimizer error: https://github.com/microsoft/onnxruntime/issues/16438", - ), - xfail( - "logical_and", - dtypes=onnx_test_common.FLOAT_TYPES + onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("And", "float, int"), - ), - xfail( - "logical_not", - dtypes=onnx_test_common.FLOAT_TYPES + onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("Not", "float, int"), - ), - xfail( - "logical_or", - dtypes=onnx_test_common.FLOAT_TYPES + onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("Or", "float, int"), - ), - xfail( - "logical_xor", - dtypes=onnx_test_common.FLOAT_TYPES + onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("Xor", "float, int"), - ), - skip( - "masked.logsumexp", - reason="fixme: https://github.com/onnx/onnx/issues/4986", - ), - xfail( - "masked.amax", - reason="fixme: ORT optimizer error: https://github.com/microsoft/onnxruntime/issues/16438", - ), - xfail( - "masked.amin", - reason="fixme: ORT optimizer error: https://github.com/microsoft/onnxruntime/issues/16438", - ), - xfail( - "masked.argmin", - dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.FLOAT_TYPES + (torch.int64,), - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "masked.argmax", - dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.FLOAT_TYPES + (torch.int64,), - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "masked_fill", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Where", "bool"), - ), - xfail( - "masked.sum", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Where", "bool"), - ), - xfail( - "masked.log_softmax", - dtypes=(torch.float16,), - reason="fixme: ORT optimizer error: https://github.com/microsoft/onnxruntime/issues/16438", - ), - xfail( - "masked.mean", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("ReduceMean", "bool"), - ), - xfail( - "masked.norm", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "masked.prod", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Where", "bool"), - ), - xfail( - "masked_select", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.masked_select.default"), - ), - xfail( - "max", - variant_name="reduction_no_dim", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("ReduceMax", "bool"), - ), - xfail( - "max", - variant_name="reduction_with_dim", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("ReduceMax", "bool"), - ), - xfail( - "max", - variant_name="reduction_with_dim", - dtypes=(torch.int64,), - reason="https://github.com/onnx/onnx/issues/4986", - ), - xfail( - "min", - variant_name="reduction_no_dim", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("ReduceMin", "bool"), - ), - xfail( - "min", - variant_name="reduction_with_dim", - dtypes=onnx_test_common.BOOL_TYPES + (torch.int64,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("ReduceMin", "bool"), - ), - skip( - "mm", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("MM", "complex64(core dump)"), - ), - xfail( - "multinomial", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "nanquantile", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.equal.default") - ), - xfail( - "nansum", - dtypes=onnx_test_common.INT_TYPES + onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("IsNaN", "int, bool"), - ), - xfail( - "narrow", - reason=onnx_test_common.reason_dynamo_does_not_support("data-dependent"), - ), - skip( - "native_batch_norm", - reason=onnx_test_common.reason_onnx_script_does_not_support("cpu is not supported: \ - https://github.com/microsoft/onnxscript/pull/1289") - ), - xfail( - "native_layer_norm", - dtypes=(torch.float16,), - reason="fixme: ORT optimizer error: https://github.com/microsoft/onnxruntime/issues/16438", - ), - xfail( - "new_full", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason=onnx_test_common.reason_dynamo_does_not_support("new_full", "complex64") - ), - xfail( - "nn.functional.adaptive_avg_pool2d", - reason=onnx_test_common.reason_onnx_script_does_not_support("RecursionError: \ - maximum recursion depth exceeded while calling a Python object"), - ), - xfail( - "nn.functional.adaptive_avg_pool3d", - reason=onnx_test_common.reason_onnx_script_does_not_support("aten._adaptive_avg_pool3d.default"), - ), - xfail( - "nn.functional.alpha_dropout", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "nn.functional.avg_pool1d", - dtypes=onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("AveragePool", "int"), - ), - xfail( - "nn.functional.avg_pool2d", - dtypes=onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("AveragePool", "int"), - ), - xfail( - "nn.functional.avg_pool3d", - dtypes=onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("AveragePool", "int"), - ), - xfail( - "nn.functional.batch_norm", - dtypes=(torch.float16,), - reason="fixme: https://github.com/microsoft/onnxscript/issues/1270", - ), - xfail( - "nn.functional.conv_transpose1d", - dtypes=(torch.int64,), - reason=onnx_test_common.reason_onnx_does_not_support("Conv1d", "int64"), - ), - xfail( - "nn.functional.conv_transpose2d", - dtypes=(torch.int64,), - reason=onnx_test_common.reason_onnx_does_not_support("Conv2d", "int64"), - ), - xfail( - "nn.functional.conv_transpose3d", - dtypes=(torch.int64,), - reason=onnx_test_common.reason_onnx_does_not_support("Conv3d", "int64"), - ), - skip( - "nn.functional.conv_transpose1d", - reason="fixme: Assertion error: result mismatch", - ), - skip( - "nn.functional.conv_transpose2d", - reason="fixme: Assertion error: result mismatch", - ), - skip( - "nn.functional.conv_transpose3d", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "nn.functional.conv1d", - dtypes=(torch.int64,), - reason=onnx_test_common.reason_onnx_does_not_support("Conv1d", "int64"), - ), - xfail( - "nn.functional.conv2d", - dtypes=(torch.int64,), - reason=onnx_test_common.reason_onnx_does_not_support("Conv2d", "int64"), - ), - xfail( - "nn.functional.conv2d", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "nn.functional.conv3d", - dtypes=(torch.int64,), - reason=onnx_test_common.reason_onnx_does_not_support("Conv3d", "int64"), - ), - xfail( - "nn.functional.conv3d", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "nn.functional.cosine_embedding_loss", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("CosineEmbeddingLoss", "bool"), - ), - xfail( - "nn.functional.ctc_loss", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.ctc_loss.default"), - ), - xfail( - "nn.functional.dropout", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "nn.functional.dropout2d", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "nn.functional.dropout3d", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "nn.functional.feature_alpha_dropout", - variant_name="with_train", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "nn.functional.feature_alpha_dropout", - variant_name="without_train", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "nn.functional.fractional_max_pool2d", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "nn.functional.fractional_max_pool3d", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "nn.functional.gaussian_nll_loss", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.gaussian_nll_loss"), - ), - xfail( - "nn.functional.grid_sample", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "nn.functional.group_norm", - dtypes=(torch.float16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("GroupNormalization", "float16"), - ), - xfail( - "nn.functional.local_response_norm", - dtypes=(torch.int64,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("avgpool", "int64"), - ), - xfail( - "nn.functional.linear", - dtypes=onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Gemm", "int"), - ), - xfail( - "nn.functional.max_pool2d", - dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Max_pool2d"), - ), - xfail( - "nn.functional.max_pool3d", - dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Max_pool3d"), - ), - xfail( - "nn.functional.multi_head_attention_forward", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "nn.functional.one_hot", - reason=onnx_test_common.reason_dynamo_does_not_support("data-dependent"), - ), - xfail( - "nn.functional.pad", - variant_name="replicate", - reason="fixme: ORT error: padding size", - ), - xfail( - "nn.functional.pad", - variant_name="replicate_negative", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "nn.functional.pad", - variant_name="reflect", - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "nn.functional.pixel_shuffle", - dtypes=(torch.int32, torch.int64) + onnx_test_common.BOOL_TYPES, - reason="fixme: ONNX Runtime does not support int32/64 inputs", - ), - xfail( - "nn.functional.pixel_unshuffle", - reason=onnx_test_common.reason_onnx_script_does_not_support("aten.pixel_unshuffle.default"), - ), - xfail( - "nn.functional.poisson_nll_loss", - dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES, - reason="fixme: result mismatch with NaN.", - ), - xfail( - "nn.functional.rrelu", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "nn.functional.rrelu", - dtypes=(torch.int64,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Relu", "int64"), - ), - skip( - "nn.functional.scaled_dot_product_attention", - matcher=lambda sample: sample.kwargs.get("dropout_p") != 0.0, - reason="dropout is random so the results do not match", - ), - xfail( - "nn.functional.scaled_dot_product_attention", - dtypes=(torch.float16,), - reason="fixme: ORT failed. https://github.com/microsoft/onnxruntime/issues/16438", - ), - xfail( - "nn.functional.selu", - reason="fixme: nn.functional.selu is not in torch._decomp.decomposition_table", - ), - xfail( - "nn.functional.soft_margin_loss", - dtypes=(torch.float16,), - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "nonzero", - dtypes=(torch.int8, torch.int16), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("NonZero", "int8, int16"), - ), - xfail( - "normal", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "normal", - variant_name="in_place", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "normal", - variant_name="number_mean", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "ones", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason="fixme: kwargs dtpye=complex64 is not supported in ONNX." - ), - xfail( - "pca_lowrank", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "quantile", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.equal.default") - ), - xfail( - "rand_like", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "randint", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "randint_like", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "randn", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "randn_like", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "resize_", - reason=onnx_test_common.reason_dynamo_does_not_support("resize_as_") - ), - xfail( - "resize_as_", - reason=onnx_test_common.reason_dynamo_does_not_support("resize_as_") - ), - xfail( - "round", - dtypes=onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Round", "int"), - ), - xfail( - "rsub", - dtypes=(torch.uint8, torch.int8, torch.int16), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "Mul", "uint8, int8, int16" - ), - ), - xfail( - "scatter_add", - dtypes=(torch.float16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("ScatterElements reduction=sum", "float16"), - ), - xfail( - "scatter_reduce", - variant_name="sum", - dtypes=(torch.float16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("ScatterElements reduction=sum", "float16"), - ), - xfail( - "scatter_reduce", - variant_name="prod", - dtypes=(torch.float16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("ScatterElements reduction=prod", "float16"), - ), - xfail( - "scatter_reduce", - variant_name="amin", - dtypes=onnx_test_common.BOOL_TYPES + (torch.float16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("ScatterElements reduction=amin", "float16"), - ), - xfail( - "scatter_reduce", - variant_name="amax", - dtypes=onnx_test_common.BOOL_TYPES + (torch.float16,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("ScatterElements reduction=amax", "float16"), - ), - xfail( - "scatter_reduce", - variant_name="mean", - reason="ONNX doesn't support reduce='mean' option", - ), - xfail( - "sgn", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("Sign", "bool"), - ), - xfail( - "sign", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("Sign", "bool"), - ), - xfail( - "signal.windows.kaiser", - reason=onnx_test_common.reason_dynamo_does_not_support("functionalization"), - ), - xfail( - "softmax", - dtypes=(torch.float16,), - reason="ORT error: https://github.com/microsoft/onnxruntime/issues/16438" - ), - xfail( - "sparse.mm", - variant_name="reduce", - reason=onnx_test_common.reason_dynamo_does_not_support("InternalTorchDynamoError: Sparse CSR tensors do not have strides"), - ), - xfail( - "sparse.sampled_addmm", - reason=onnx_test_common.reason_dynamo_does_not_support("InternalTorchDynamoError: Sparse CSR tensors do not have strides"), - ), - xfail( - "special.erfcx", - dtypes=onnx_test_common.INT_TYPES + onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Erf", "int, bool"), - ), - xfail( - "special.erfcx", - dtypes=onnx_test_common.FLOAT_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("Erfcx"), - ), - xfail( - "special.log_ndtr", - dtypes=onnx_test_common.INT_TYPES + onnx_test_common.FLOAT_TYPES, - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "special.ndtr", - dtypes=(torch.float16,), - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "square", - dtypes=(torch.int8, torch.uint8, torch.int16), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Pow", "int8, uint8, int16"), - ), - xfail( - "squeeze", - variant_name="multiple", - reason="fixme: https://github.com/microsoft/onnxscript/issues/1264", - ), - xfail( - "svd_lowrank", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "stft", - reason=onnx_test_common.reason_dynamo_does_not_support("aten._fft_r2c.default"), - ), - xfail( - "sub", - dtypes=(torch.uint8, torch.int8, torch.int16), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "Mul", "uint8, int8, int16" - ), - ), - xfail( - "take", - reason=onnx_test_common.reason_dynamo_does_not_support("data-dependent"), - ), - xfail( - "tensor_split", - reason=onnx_test_common.reason_dynamo_does_not_support("data-dependent"), - ), - xfail( - "topk", - dtypes=(torch.int64, torch.int32, torch.float16), - reason="fixme: Assertion error: result mismatch", - ), - xfail( - "tril", - dtypes=onnx_test_common.BOOL_TYPES + (torch.int32,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("trilu", "bool, int32"), - ), - xfail( - "triu", - dtypes=onnx_test_common.BOOL_TYPES + (torch.int32,), - reason=onnx_test_common.reason_onnx_runtime_does_not_support("trilu", "bool, int32"), - ), - xfail( - "trunc", - dtypes=onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Floor", "int"), - ), - xfail( - "unflatten", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_does_not_support("Unflatten") - ), - xfail( - "uniform", - reason=onnx_test_common.reason_dynamo_does_not_support("wrapper_set_seed"), - ), - xfail( - "unique", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.unique_consecutive.default"), - ), - xfail( - "unique_consecutive", - reason=onnx_test_common.reason_dynamo_does_not_support("aten.unique_consecutive.default"), - ), - xfail( - "unravel_index", - dtypes=onnx_test_common.BOOL_TYPES + onnx_test_common.INT_TYPES, - reason=onnx_test_common.reason_onnx_script_does_not_support("Floor", "bool, int"), - ), - xfail( - "unsqueeze_copy", - reason="OnnxExporterError: Failed to export model", - dtypes=(torch.int8, torch.uint8, torch.int16), - ), - xfail( - "where", - dtypes=onnx_test_common.BOOL_TYPES, - reason=onnx_test_common.reason_onnx_runtime_does_not_support("Where", "bool"), - ), - xfail( - "zeros", - dtypes=onnx_test_common.COMPLEX_TYPES, - reason="fixme: kwargs dtpye=complex64 is not supported in ONNX." - ), - # SLOW TESTS (All are xfails if we run them) - # TODO: https://github.com/pytorch/pytorch/issues/117118 - skip_slow( - "cdist", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "histogram", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "histogramdd", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "linalg.lu_solve", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "linalg.solve_triangular", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "linalg.svd", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "logspace", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "logspace", - variant_name="tensor_overload", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "max_pool2d_with_indices_backward", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "nn.functional.interpolate", - variant_name="bicubic", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "nn.functional.max_unpool1d", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "nn.functional.max_unpool2d", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "nn.functional.max_unpool3d", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "nn.functional.max_pool1d", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "nn.functional.max_pool2d", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "nn.functional.max_pool3d", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "nn.functional.unfold", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "ormqr", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "searchsorted", - reason="fixme: Test sets are too many.", - ), - skip_slow( - "svd", - reason="fixme: Test sets are too many.", - ), -) -# fmt: on - -# NOTE: The xfail and skip with a matcher function or model_type should be -# at under the `SKIP_XFAIL_SUBTESTS_WITH_MATCHER_AND_MODEL_TYPE` section. -SKIP_XFAIL_SUBTESTS_WITH_MATCHER_AND_MODEL_TYPE: tuple[ - onnx_test_common.DecorateMeta, ... -] = ( - skip( - "_native_batch_norm_legit", - model_type=pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - reason="https://github.com/pytorch/pytorch/issues/115106", - ), - skip( - "_batch_norm_with_update", - model_type=pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - reason="https://github.com/pytorch/pytorch/issues/115106", - ), - # TODO: This test currently fails only for certain inputs, e.g. shape([3, 1]). - # Numerically the ONNX program is correct, but the output shapes for `save_mean` - # and `save_var` were tensor(-2.1268) instead of the correct tensor([-2.1268]) - # for example. - skip( - "_batch_norm_with_update", - model_type=pytorch_test_common.TorchModelType.TORCH_NN_MODULE, - reason="not supported yet", - ), - xfail( - "addmm", # xfail can't only use dtypes to catch all cases - matcher=lambda sample: sample.input.dtype - in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64), - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "Gemm", "uint8, int8, int16, int32, int64" - ), - ), - xfail( - "addmm", - matcher=lambda sample: sample.args[0].numel() == 0, - reason="ONNX Runtime does not support empty tensors multiplication", - ), - xfail( - "addmm", - variant_name="decomposed", - matcher=lambda sample: sample.args[0].numel() == 0, - reason="ONNX Runtime does not support empty tensors multiplication", - ), - xfail( - "amax", - matcher=lambda sample: len(sample.input.shape) == 0 - and (sample.kwargs.get("dim") is not None and sample.kwargs.get("dim") != ()), - reason="Op (ReduceMax) [ShapeInferenceError] axis must be in [-rank, rank-1]. input rank was 0", - ), - xfail( - "amin", - matcher=lambda sample: len(sample.input.shape) == 0 - and (sample.kwargs.get("dim") is not None and sample.kwargs.get("dim") != ()), - reason="Op (ReduceMin) [ShapeInferenceError] axis must be in [-rank, rank-1]. input rank was 0", - ), - xfail( - "aminmax", - matcher=lambda sample: len(sample.input.shape) == 0 - and sample.kwargs.get("dim") is not None, - reason="Op (ReduceMin) [ShapeInferenceError] axis must be in [-rank, rank-1]. input rank was 0", - ), - skip( - "cat", - matcher=lambda sample: sample.input[0].equal(torch.tensor([])), - reason="core dump - cat does not support zero-dim tensors yet", - ), - xfail( - "index_add", - matcher=lambda sample: len(sample.input.shape) == 0, - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "ScatterND", "0-D tensor" - ), - ), - xfail( - "index_add", - matcher=lambda sample: isinstance(sample.args[0], int) and sample.args[0] == -1, - reason="fixme: aten::index_put indices contains None when dim is -1", - ), - xfail( - "index_copy", - matcher=lambda sample: len(sample.input.shape) == 0, - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "ScatterND", "0-D tensor" - ), - ), - xfail( - "index_copy", - matcher=lambda sample: isinstance(sample.args[0], int) and sample.args[0] == -1, - reason="fixme: aten::index_put indices contains None when dim is -1", - ), - xfail( - "index_put", - matcher=lambda sample: (sample.args[0][0].dtype == torch.bool) - and (sample.kwargs.get("accumulate") is False), - reason=onnx_test_common.reason_dynamo_does_not_support( - "https://github.com/pytorch/pytorch/issues/101150" - ), - ), - skip( - "linalg.multi_dot", - matcher=lambda sample: sum(torch.numel(input) for input in sample.input) == 0, - reason="fixme: Undefined", - ), - skip( - "log_softmax", - matcher=lambda sample: len(sample.input.shape) == 0, - reason="fixme: LogSoftMax does not support empty tensor as input", - ), - skip( - "log_softmax", - variant_name="with_dtype", - matcher=lambda sample: len(sample.input.shape) == 0, - reason="fixme: LogSoftMax does not support empty tensor as input", - ), - skip( - "masked.log_softmax", - matcher=lambda sample: len(sample.input.shape) == 0, - reason="fixme: LogSoftMax does not support empty tensor as input", - ), - skip( - "matmul", - matcher=lambda sample: torch.numel(sample.input) == 0, - reason="values of matmul of [m, 0] and [0, n] matrices are undefined", - ), - skip( - "mm", - matcher=lambda sample: torch.numel(sample.input) == 0, - reason="values of matmul of [m, 0] and [0, n] matrices are undefined", - ), - xfail( - "native_batch_norm", - matcher=lambda sample: sample.args[-3] is True - and any(arg is not None for arg in sample.args[2:4]), - model_type=pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - reason="https://github.com/pytorch/pytorch/issues/115106", - ), - xfail( - "nn.functional.avg_pool1d", - matcher=lambda sample: (sample.kwargs.get("ceil_mode") is True) - and ( - sample.kwargs.get("count_include_pad") is True - or sample.input.shape[2] - % ( - sample.args[0][0] - if isinstance(sample.args[0], tuple) - else sample.args[0] - ) - != 0 - ), - reason="fixme: ORT doesn't match PyTorch when ceil_mode=True until opset 19", - ), - xfail( - "nn.functional.avg_pool2d", - matcher=lambda sample: (len(sample.args) > 5 and sample.args[5] is not None) - or (sample.kwargs.get("divisor_override") is not None), - reason="ONNX doesn't support divisor_override argument", - ), - xfail( - "nn.functional.avg_pool3d", - matcher=lambda sample: sample.kwargs.get("ceil_mode") is True, - reason="fixme: ORT doesn't match PyTorch when ceil_mode=True until opset 19", - ), - xfail( - "nn.functional.avg_pool3d", - matcher=lambda sample: (len(sample.args) > 5 and sample.args[5] is not None) - or (sample.kwargs.get("divisor_override") is not None), - reason="ONNX doesn't support divisor_override argument", - ), - xfail( - "nn.functional.batch_norm", - matcher=lambda sample: sample.kwargs.get("training") is True - and any(arg is not None for arg in sample.args[2:4]), - reason="Flaky failure: https://github.com/pytorch/pytorch/issues/115106", - ), - xfail( - "nn.functional.conv2d", - matcher=lambda sample: sample.kwargs.get("padding") == "valid", - reason="fixme: https://github.com/pytorch/pytorch/issues/117054", - ), - xfail( - "nn.functional.conv3d", - matcher=lambda sample: sample.kwargs.get("padding") == "valid", - reason="fixme: https://github.com/pytorch/pytorch/issues/117054", - ), - skip( - "nn.functional.cross_entropy", - matcher=lambda sample: not isinstance(sample.kwargs.get("weight"), int), - reason="ONNX SoftmaxCrossEntropyLoss op only accept argument[weight] is int type", - ), - xfail( - "nn.functional.embedding", - matcher=lambda sample: sample.kwargs.get("max_norm") is not None, - model_type=pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - reason="https://github.com/pytorch/pytorch/issues/115106", - ), - skip_torchlib_forward_compatibility( - "nn.functional.embedding_bag", - matcher=lambda sample: sample.kwargs.get("padding_idx") is not None or True, - reason=onnx_test_common.reason_onnx_script_does_not_support( - "'padding_idx' overload for _embedding_bag and _embedding_bag_forward_only. " - "'padding_idx=-1' is emitted for aten op when 'padding_idx' is not provided" - ), - github_issue="https://github.com/microsoft/onnxscript/issues/1056", - ), - xfail( - "nn.functional.group_norm", - matcher=lambda sample: torch.numel(sample.input) == 0, - reason=onnx_test_common.reason_onnx_runtime_does_not_support( - "Reshape", "empty tensor" - ), - ), - xfail( - "nn.functional.instance_norm", - model_type=pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - matcher=lambda sample: sample.kwargs.get("running_mean") is not None, - reason="fixme: KeyError: 'self___kwargs__running_mean'", - ), - xfail( - "nn.functional.max_pool3d", - matcher=lambda sample: sample.kwargs.get("ceil_mode") is True - and sample.kwargs.get("padding") == 1, - reason="FIXME: After https://github.com/microsoft/onnxruntime/issues/15446 is fixed", - ), - xfail( - "nn.functional.pixel_shuffle", - matcher=lambda sample: sample.input.numel() == 0, - reason="fixme: ORT does not support empty tensor as input", - ), - xfail( - "nonzero", - matcher=lambda sample: len(sample.input.shape) == 0 - and sample.kwargs.get("as_tuple", False) is False, - reason="Output 'shape' do not match: torch.Size([0, 1]) != torch.Size([0, 0]).", - model_type=pytorch_test_common.TorchModelType.TORCH_NN_MODULE, - ), - xfail( - "scatter_add", - matcher=lambda sample: len(sample.input.shape) == 0, - reason="fixme: Rank(0) input will lead ORT failed due to different rank(result) in if-else branch", - ), - skip( - "scatter_reduce", - variant_name="amax", - # ONNX has not include_self parameter and default is include_self=True mode - matcher=lambda sample: sample.kwargs.get("include_self") is False, - reason="ONNX does't support include_self=False option", - ), - skip( - "scatter_reduce", - variant_name="amin", - # ONNX has not include_self parameter and default is include_self=True mode - matcher=lambda sample: sample.kwargs.get("include_self") is False, - reason="ONNX does't support include_self=False option", - ), - skip( - "scatter_reduce", - variant_name="prod", - # ONNX has not include_self parameter and default is include_self=True mode - matcher=lambda sample: sample.kwargs.get("include_self") is False, - reason="ONNX does't support include_self=False option", - ), - skip( - "scatter_reduce", - variant_name="sum", - # ONNX has not include_self parameter and default is include_self=True mode - matcher=lambda sample: sample.kwargs.get("include_self") is False, - reason="ONNX does't support include_self=False option", - ), - skip( - "softmax", - matcher=lambda sample: len(sample.input.shape) == 0, - reason="fixme: LogSoftMax does not support empty tensor as input", - ), - xfail( - "unflatten", - reason="Logic not implemented for size 0 inputs in op.Reshape", - matcher=lambda sample: any(dim == 0 for dim in sample.input.shape), - ), - skip( - "signal.windows.hamming", - model_type=pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - reason="does not match node name", - ), - skip( - "signal.windows.general_hamming", - model_type=pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - reason="does not match node name", - ), - skip( - "signal.windows.blackman", - model_type=pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - reason="does not match node name", - ), - skip( - "signal.windows.general_cosine", - model_type=pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - reason="does not match node name", - ), - skip( - "signal.windows.hann", - model_type=pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - reason="does not match node name", - ), - skip( - "signal.windows.nuttall", - model_type=pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - reason="does not match node name", - ), -) - -OPS_DB = copy.deepcopy(common_methods_invocations.op_db) -OP_WITH_SKIPPED_XFAIL_SUBTESTS = frozenset( - meta.op_name for meta in SKIP_XFAIL_SUBTESTS_WITH_MATCHER_AND_MODEL_TYPE -) -ALL_OPS_IN_DB = frozenset(op_info.name for op_info in OPS_DB) - - -def _torch_size_flatten_spec(d: List[Any], spec: Any) -> List[Any]: - return [d[i] for i in range(spec.num_children)] - - -torch.fx._pytree.register_pytree_flatten_spec( - torch.Size, - _torch_size_flatten_spec, -) - - -class SingleOpModel(torch.nn.Module): - """Test model to wrap around a single op for export.""" - - def __init__(self, op, kwargs): - super().__init__() - self.operator = op - self.kwargs = kwargs - - def forward(self, *args): - return self.operator(*args, **self.kwargs) - - -def _should_skip_xfail_test_sample( - op_name: str, - variant_test_name: str, - sample, - model_type: pytorch_test_common.TorchModelType, -) -> Tuple[Optional[str], Optional[str]]: - """Check if the test sample should be skipped or xfailed. - - If the xfail/skip decorator meta is matched with its op_name and model_type, - return the test_behavior and reason. Otherwise, return None, None. Note that - if the matcher is None, the test is decorator_meta is meant to skip/xfail all model types. - - Args: - op_name: The name of the op. - sample: The test sample. - model_type: The model type of the test. - - Returns: - A tuple of (test_behavior, reason). test_behavior is either "skip" or "xfail". - reason is the reason for the test_behavior. - """ - - if op_name not in OP_WITH_SKIPPED_XFAIL_SUBTESTS: - return None, None - for decorator_meta in SKIP_XFAIL_SUBTESTS_WITH_MATCHER_AND_MODEL_TYPE: - # Linear search on ops_test_data.SKIP_XFAIL_SUBTESTS_WITH_MATCHER_AND_MODEL_TYPE. That's fine because the list is small. - # NOTE: If model_type is None, the test is decorator_meta is meant to skip/xfail all model types. - if ( - decorator_meta.op_name == op_name - and decorator_meta.variant_name == variant_test_name - ) and ( - model_type == decorator_meta.model_type or decorator_meta.model_type is None - ): - if decorator_meta.matcher is None and decorator_meta.model_type is None: - raise TypeError( - "Either Matcher or model_type must be defined in sub xfail and skip." - ) - if decorator_meta.matcher is not None and decorator_meta.matcher(sample): - return decorator_meta.test_behavior, decorator_meta.reason - elif decorator_meta.matcher is None: - # xfail/skip the whole test of the model type without matcher - return decorator_meta.test_behavior, decorator_meta.reason - return None, None - - -def _compare_onnx_and_torch_exported_program( - torch_exported_program, - onnx_exported_program, - input_args, - input_kwargs=None, - test_name=None, - sample_num=None, - sample_kwargs=None, - rtol=1e-03, - atol=1e-07, - only_check_shape=False, -): - # avoid mutable default argument - if input_kwargs is None: - input_kwargs = {} - - # NOTE: ONNXProgram holds a reference (not copy) to the original ref_model, including its state_dict. - # Thus, ONNXProgram() must run before ref_model() to prevent ref_model.forward() from changing the state_dict. - # Otherwise, the ref_model can change buffers on state_dict which would be used by ONNXProgram.__call__() - onnx_outputs = onnx_exported_program(*input_args, **input_kwargs) - if isinstance(torch_exported_program, torch.export.ExportedProgram): - torch_outputs = torch_exported_program.module()(*input_args, **input_kwargs) - else: - torch_outputs = torch_exported_program(*input_args, **input_kwargs) - torch_outputs_onnx_format = onnx_exported_program.adapt_torch_outputs_to_onnx( - torch_outputs - ) - if len(torch_outputs_onnx_format) != len(onnx_outputs): - raise AssertionError( - f"Expected {len(torch_outputs_onnx_format)} outputs, got {len(onnx_outputs)}" - ) - - for j, (torch_output, onnx_output) in enumerate( - zip(torch_outputs_onnx_format, onnx_outputs) - ): - if only_check_shape: - assert torch_output.shape == onnx_output.shape - else: - try: - torch.testing.assert_close( - torch.tensor(onnx_output), - torch_output, - rtol=rtol, - atol=atol, - equal_nan=True, - ) - except AssertionError as e: - if os.environ.get("CREATE_REPRODUCTION_REPORT") == "1": - error_reproduction.create_mismatch_report( - test_name, - sample_num, - onnx_exported_program.model_proto, - input_args, - sample_kwargs, - torch.tensor(onnx_output), - torch_output, - e, - ) - if len(torch_outputs_onnx_format) > 1: - raise AssertionError(f"Output {j} mismatch") from e - raise - - -def _run_test_output_match( - test_suite: onnx_test_common._TestONNXRuntime, - device: str, - dtype: torch.dtype, - op: opinfo_core.OpInfo, -): - # device is provided by instantiate_device_type_tests, but we only want to run in cpu. - assert device == "cpu" - samples = op.sample_inputs( - device, - dtype, - requires_grad=False, - ) - for i, cpu_sample in enumerate(samples): - inputs = (cpu_sample.input, *cpu_sample.args) - # Provide the repr to subtest because tensors are not serializable in parallel test runs - - with test_suite.subTest( - opset=test_suite.opset_version, - sample_num=i, - inputs=repr(inputs), - kwargs=repr(cpu_sample.kwargs), - ): - test_behavior, reason = _should_skip_xfail_test_sample( - op.name, op.variant_test_name, cpu_sample, test_suite.model_type - ) - with onnx_test_common.normal_xfail_skip_test_behaviors( - test_behavior, reason - ): - model = SingleOpModel(op.op, cpu_sample.kwargs) - model.eval() - - if ( - dtype == torch.float32 - and op.name in test_suite.fp32_low_precision_dict - ): - rtol = test_suite.fp32_low_precision_dict[op.name][0] - atol = test_suite.fp32_low_precision_dict[op.name][1] - elif dtype == torch.float32: - # Relax atol and rtol for float32 based on empirical results - rtol = 1e-5 - atol = 2e-5 - elif ( - dtype == torch.float16 - and (op.name, op.variant_test_name) - in test_suite.fp16_low_precision_variant_dict - ): - rtol = test_suite.fp16_low_precision_variant_dict[ - (op.name, op.variant_test_name) - ][0] - atol = test_suite.fp16_low_precision_variant_dict[ - (op.name, op.variant_test_name) - ][1] - elif ( - dtype == torch.float16 - and op.name in test_suite.fp16_low_precision_dict - ): - rtol = test_suite.fp16_low_precision_dict[op.name][0] - atol = test_suite.fp16_low_precision_dict[op.name][1] - else: - rtol = None - atol = None - - if ( - test_suite.model_type - == pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM - ): - try: - # TODO (tugsbayasgalan) Migrate to pre-dispatch IR - # BUG1: python test/onnx/test_fx_op_consistency.py -k test_output_match_triu_cpu_int32 - # has unexpected success, but don't know how to remove from xfail list - # BUG2: User output to_sparse is not in the correct order or is not found in the - # exported program's user_output list (https://github.com/pytorch/pytorch/issues/124328) - # python test/onnx/test_fx_op_consistency.py -k test_output_match_to_sparse_cpu_float32 - # BUG3: [ShapeInferenceError] Inference error(s): (op_type:aten_view, node name: aten_view_4): - # [ShapeInferenceError] - # Inference error(s): (op_type:Reshape, node name: n1): [ShapeInferenceError] Invalid position of 0. - # python test/onnx/test_fx_op_consistency.py -k test_output_match_stack_cpu_int32 - from torch.export import _trace - - model = _trace._export(model, inputs, pre_dispatch=False) - - except AssertionError as e: - # NOTE: avoid fake_mode detection bug in torch.export.export - pytest.xfail( - onnx_test_common.reason_dynamo_does_not_support(str(e)) - ) - - try: - onnx_program = torch.onnx.dynamo_export( - model, - *inputs, - ) - except torch.onnx.OnnxExporterError as e: - # NOTE: If the model has unsupported nodes, we will skip the test - # with non-strict xfail. Otherwise, we will raise the error. - if hasattr( - e.__cause__, "diagnostic" - ) and e.__cause__.diagnostic.rule in ( - _rules._POERules.no_symbolic_function_for_call_function, - _rules._POERules.unsupported_fx_node_analysis, - ): - pytest.xfail( - onnx_test_common.reason_onnx_script_does_not_support(str(e)) - ) - else: - raise e - _compare_onnx_and_torch_exported_program( - model, - onnx_program, - inputs, - test_name=test_suite.id(), - sample_num=i, - sample_kwargs=cpu_sample.kwargs, - rtol=rtol, - atol=atol, - only_check_shape=(op.name in test_suite.only_shape_check_list), - ) - - -def _parameterized_class_attrs_and_values(): - input_values = [] - input_values.extend( - itertools.product( - (opset for opset in onnx_test_common.FX_TESTED_OPSETS), - ( - pytorch_test_common.TorchModelType.TORCH_NN_MODULE, - pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM, - ), - ) - ) - return { - "attrs": ["opset_version", "model_type"], - "input_values": input_values, - } - - -def _parameterize_class_name(cls: Type, idx: int, input_dicts: Mapping[Any, Any]): - """Combine class name with the parameterized arguments. - - This function is passed to `parameterized.parameterized_class` as the - `class_name_func` argument. - """ - suffixes = [] - for k, v in input_dicts.items(): - suffixes.append(f"{k}_{v}") - return f"{cls.__name__}_{'_'.join(suffixes)}" - - -@parameterized.parameterized_class( - **_parameterized_class_attrs_and_values(), - class_name_func=_parameterize_class_name, -) -class TestOnnxModelOutputConsistency(onnx_test_common._TestONNXRuntime): - """Test output consistency between exported ONNX models and PyTorch eager mode. - - This is a parameterized test suite. - """ - - opset_version = -1 - dynamic_shapes: bool = False - model_type: pytorch_test_common.TorchModelType = ( - pytorch_test_common.TorchModelType.TORCH_NN_MODULE - ) - - # NOTE: Follow torchlib settings in ops_test_data.py - only_shape_check_list = [ - "empty", - "empty_like", - "empty_strided", - "new_empty", - "new_empty_strided", - ] - - fp32_low_precision_dict = { - "native_layer_norm": [2e-4, 7e-4], - } - - fp16_low_precision_dict = { - "addbmm": [2e-1, 2e-2], - "addcdiv": [3e-2, 1.4e-3], - "addcmul": [3e-2, 1e-3], - "addmv": [5e-2, 3e-2], - "addr": [3e-3, 4e-3], - "baddbmm": [3e-2, 1e-3], - "cumulative_trapezoid": [3e-2, 1e-3], - "cross": [3e-2, 2e-2], - "diff": [1e-2, 5e-2], - "div": [5e-3, 1e-3], - "gradient": [3e-3, 4e-3], - "linalg.cross": [1e-3, 2e-2], - "linalg.multi_dot": [3e-2, 1e-3], - "linalg.vecdot": [1e-2, 2e-2], - "linspace": [2e-2, 2e-3], - "masked.std": [2e-2, 2e-3], - "masked.var": [2e-2, 2e-2], - "matmul": [2e-2, 6e-2], - "mv": [9e-3, 1e-5], - "nn.functional.batch_norm": [3e-2, 1e-3], - "nn.functional.binary_cross_entropy": [3e-2, 1e-3], - "nn.functional.binary_cross_entropy_with_logits": [4e-2, 4e-3], - "nn.functional.cosine_similarity": [3e-2, 1e-3], - "nn.functional.cosine_embedding_loss": [1e-2, 1e-3], - "nn.functional.hardsigmoid": [1e-3, 5e-3], - "nn.functional.hardswish": [1e-3, 5e-3], - "nn.functional.hinge_embedding_loss": [4e-1, 3e-3], - "nn.functional.huber_loss": [1e-2, 1e-1], - "nn.functional.instance_norm": [1e-2, 1e-3], - "nn.functional.interpolate": [1e-2, 1e-3], - "nn.functional.kl_div": [2e-3, 2e-4], - "nn.functional.multilabel_soft_margin_loss": [4e-2, 5e-3], - "nn.functional.local_response_norm": [1e-2, 5e-3], - "nn.functional.poisson_nll_loss": [4e-2, 6e-3], - "nn.functional.nll_loss": [3e-2, 1e-3], - "nn.functional.triplet_margin_loss": [2e-2, 1e-2], - "nn.functional.triplet_margin_with_distance_loss": [3e-2, 1e-2], - "native_batch_norm": [3e-2, 1e-3], - "norm": [1e-2, 1e-2], - "dot": [3e-2, 1e-3], - "logit": [3e-2, 1e-3], - "rsub": [3e-2, 1e-3], - "sinc": [2e-1, 6e-4], - "sub": [3e-2, 1e-3], - "trapezoid": [1e-3, 7e-3], - "trapz": [1e-3, 7e-3], - "vdot": [1e-3, 1e-2], - } - - fp16_low_precision_variant_dict = { - ("nn.functional.interpolate", "trilinear"): [3e-2, 3e-3], - ("nn.functional.interpolate", "linear"): [3e-2, 3e-3], - } - - @common_device_type.ops( - [op for op in OPS_DB if op.name in ALL_OPS_IN_DB], - allowed_dtypes=onnx_test_common.TESTED_DTYPES, - ) - def test_output_match(self, device: str, dtype: torch.dtype, op): - """Test the ONNX exporter.""" - _run_test_output_match(self, device, dtype, op) - - -for opset in onnx_test_common.FX_TESTED_OPSETS: - for model_type in pytorch_test_common.TorchModelType: - # The name needs to match the parameterized_class name. - test_class_name = f"TestOnnxModelOutputConsistency_opset_version_{opset}_model_type_TorchModelType.{model_type.name}" - onnx_test_common.add_decorate_info( - OPS_DB, - test_class_name, - "test_output_match", - opset=opset, - skip_or_xfails=EXPECTED_SKIPS_OR_FAILS_WITH_DTYPES, - ) - - common_device_type.instantiate_device_type_tests( - globals()[test_class_name], globals(), only_for="cpu" - ) - -if __name__ == "__main__": - common_utils.run_tests() diff --git a/test/onnx/test_fx_to_onnx.py b/test/onnx/test_fx_to_onnx.py index 04f132abc9c9a..5de711f181f4d 100644 --- a/test/onnx/test_fx_to_onnx.py +++ b/test/onnx/test_fx_to_onnx.py @@ -200,34 +200,6 @@ def forward(self, input): expected_node="aten.convolution.default", ) - def test_dispatch_overload_fall_back_default_raise_diagnostic_warning(self): - class TraceModel(torch.nn.Module): - def forward(self, input): - return torch.ops.aten.add.Tensor(input, input) - - onnx_registry = torch.onnx.OnnxRegistry() - self.assertTrue( - onnx_registry.is_registered_op( - namespace="aten", op_name="add", overload="Tensor" - ) - ) - - aten_add_Tensor = registration.OpName.from_name_parts( - namespace="aten", op_name="add", overload="Tensor" - ) - onnx_registry._registry.pop(aten_add_Tensor) - - x = torch.tensor(3) - onnx_program = dynamo_export( - TraceModel(), x, export_options=ExportOptions(onnx_registry=onnx_registry) - ) - assert_has_diagnostics( - onnx_program.diagnostic_context, - diagnostics.rules.find_operator_overloads_in_onnx_registry, - diagnostics.levels.WARNING, - expected_node="aten.add.Tensor", - ) - def test_aten_clone_does_not_raise_warning_of_lack_of_memory_format(self): class CustomModule(torch.nn.Module): def forward(self, input): diff --git a/test/onnx/test_fx_to_onnx_with_onnxruntime.py b/test/onnx/test_fx_to_onnx_with_onnxruntime.py index 150edfef3412d..dd53ded23cdbe 100644 --- a/test/onnx/test_fx_to_onnx_with_onnxruntime.py +++ b/test/onnx/test_fx_to_onnx_with_onnxruntime.py @@ -478,6 +478,9 @@ def forward(self, x): MutationModel(), (torch.randn(12),), has_mutation=True ) + @unittest.skip( + "Fixme: arange in torchlib does not support dynamic start and end yet." + ) def test_arange(self): class ArangeModel(torch.nn.Module): def forward(self, input): diff --git a/torch/onnx/_internal/_exporter_legacy.py b/torch/onnx/_internal/_exporter_legacy.py index 52f37460592cd..c66c3492e98ba 100644 --- a/torch/onnx/_internal/_exporter_legacy.py +++ b/torch/onnx/_internal/_exporter_legacy.py @@ -46,11 +46,8 @@ import onnx - import onnxruntime # type: ignore[import] - import onnxscript # type: ignore[import] - from onnxscript.function_libs.torch_lib import ( # type: ignore[import] - registration as torchlib_registry, - ) + import onnxruntime + import onnxscript from torch._subclasses import fake_tensor from torch.onnx._internal.fx import diagnostics @@ -110,10 +107,6 @@ def __init__(self) -> None: self._registry: dict[registration.OpName, list[registration.ONNXFunction]] = ( defaultdict(list) ) - # FIXME: Avoid importing onnxscript into torch - from onnxscript.function_libs.torch_lib import ( # type: ignore[import] # noqa: F401 - registration, - ) # opset_version is unused for now, since torchlib only supports opset18. # TODO: get opset version from torchlib @@ -123,8 +116,7 @@ def __init__(self) -> None: "different opset version, please register them with register_custom_op." ) - # Initialize registry from torchlib - self._initiate_registry_from_torchlib(registration.default_registry) + self._initiate_registry_from_torchlib() @property def opset_version(self) -> int: @@ -134,33 +126,25 @@ def opset_version(self) -> int: return self._opset_version - def _initiate_registry_from_torchlib( - self, torchlib_registry: torchlib_registry.Registry - ): + def _initiate_registry_from_torchlib(self) -> None: """Populates the registry with ATen functions from torchlib. Args: torchlib_registry: The torchlib registry to use for populating the registry. """ - for aten_name, aten_overloads_func in torchlib_registry.items(): - internal_name_instance = registration.OpName.from_qualified_name(aten_name) - for overload_func in aten_overloads_func.overloads: - symbolic_function = registration.ONNXFunction( - onnx_function=overload_func, - op_full_name=internal_name_instance.qualified_name(), - is_custom=False, - is_complex=False, - ) - self._register(internal_name_instance, symbolic_function) - - for complex_func in aten_overloads_func.complex: - symbolic_function = registration.ONNXFunction( - onnx_function=complex_func, - op_full_name=internal_name_instance.qualified_name(), - is_custom=False, - is_complex=True, - ) - self._register(internal_name_instance, symbolic_function) + import onnxscript._framework_apis.torch_2_5 as onnxscript_apis + + for meta in onnxscript_apis.get_torchlib_ops(): + internal_name_instance = registration.OpName.from_qualified_name( + meta.qualified_name + ) + symbolic_function = registration.ONNXFunction( + onnx_function=meta.function, # type: ignore[arg-type] + op_full_name=internal_name_instance.qualified_name(), + is_custom=False, + is_complex=meta.is_complex, + ) + self._register(internal_name_instance, symbolic_function) def _register( self,