forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
__future__.py
75 lines (54 loc) · 3.11 KB
/
__future__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
_overwrite_module_params_on_conversion: bool = False
_swap_module_params_on_conversion: bool = False
def set_overwrite_module_params_on_conversion(value: bool) -> None:
"""
Sets whether to assign new tensors to the parameters instead of changing the
existing parameters in-place when converting an ``nn.Module``.
When enabled, the following methods will assign new parameters to the module:
#. ``module.{device}()`` (e.g. :meth:`nn.Module.cuda()`) for moving a module between devices
#. ``module.{dtype}()`` (e.g. :meth:`nn.Module.float()`) for converting a module to a different dtype
#. :meth:`nn.Module.to`
#. :meth:`nn.Module.to_empty`
Args:
value (bool): Whether to assign new tensors or not.
"""
global _overwrite_module_params_on_conversion
_overwrite_module_params_on_conversion = value
def get_overwrite_module_params_on_conversion() -> bool:
"""
Returns whether to assign new tensors to the parameters instead of changing the
existing parameters in-place when converting an :class:`torch.nn.Module`. Defaults to ``False``.
See :func:`~torch.__future__.set_overwrite_module_params_on_conversion` for more information.
"""
return _overwrite_module_params_on_conversion
def set_swap_module_params_on_conversion(value: bool) -> None:
"""
Sets whether to use :func:`~torch.utils.swap_tensors` instead of setting ``.data`` to
change the existing parameters in-place when converting an ``nn.Module`` and instead
of ``param.copy_(state_dict[key])`` when loading a state dict into an ``nn.Module``.
.. note::
This function takes precedence over :func:`~torch.__future__.get_overwrite_module_params_on_conversion`
When enabled, the following methods will swap the existing parameters in-place:
#. ``module.{device}()`` (e.g. :meth:`nn.Module.cuda()`) for moving a module between devices
#. ``module.{dtype}()`` (e.g. :meth:`nn.Module.float()`) for converting a module to a different dtype
#. :meth:`nn.Module.to`
#. :meth:`nn.Module.to_empty`
#. :meth:`nn.Module.load_state_dict`
The semantics for :meth:`~nn.Module.load_state_dict` when this is set are as follows:
#. For each parameter/buffer, its corresponding ``state_dict['key']`` is transformed via
:meth:`~torch.Tensor.module_load` (i.e. ``res = param.module_load(state_dict['key'])``)
#. If necessary, ``res`` will be wrapped in an :class:`~nn.Parameter`
#. The parameter/buffer in the module will be swapped via :func:`~torch.utils.swap_tensors`
with ``res``
Args:
value (bool): Whether to use :func:`~torch.utils.swap_tensors` or not.
"""
global _swap_module_params_on_conversion
_swap_module_params_on_conversion = value
def get_swap_module_params_on_conversion() -> bool:
"""
Returns whether to use :func:`~torch.utils.swap_tensors` instead of setting .data to
change the existing parameters in-place when converting an ``nn.Module``. Defaults to ``False``.
See :func:`~torch.__future__.set_swap_module_params_on_conversion` for more information.
"""
return _swap_module_params_on_conversion