forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BinaryMulKernel.cu
48 lines (42 loc) · 1.61 KB
/
BinaryMulKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/BinaryInternal.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAMathCompat.h>
#include <c10/util/TypeSafeSignMath.h>
#include <ATen/native/cuda/JitLoops.cuh>
#include <ATen/native/cuda/Loops.cuh>
#include <type_traits>
// NOTE: CUDA on Windows requires that the enclosing function
// of a __device__ lambda not have internal linkage.
namespace at::native {
constexpr char mul_name[] = "mul_kernel";
void mul_kernel_cuda(TensorIteratorBase& iter) {
auto common_dtype = iter.common_dtype();
if (common_dtype == kComplexHalf) {
using scalar_t = c10::complex<at::Half>;
#if AT_USE_JITERATOR()
static const auto mul_string = jiterator_stringify(
template <typename T> T mul_kernel(T a, T b) { return a * b; });
opmath_jitted_gpu_kernel_with_scalars<mul_name, scalar_t, scalar_t>(
iter, mul_string);
#else
using opmath_t = at::opmath_type<scalar_t>;
opmath_symmetric_gpu_kernel_with_scalars<scalar_t>(
iter, binary_internal::MulFunctor<opmath_t>());
#endif
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
kHalf, kBFloat16, kBool, iter.common_dtype(), "mul_cuda", [&]() {
using opmath_t = at::opmath_type<scalar_t>;
opmath_symmetric_gpu_kernel_with_scalars<scalar_t>(
iter, binary_internal::MulFunctor<opmath_t>());
});
}
}
REGISTER_DISPATCH(mul_stub, &mul_kernel_cuda);
} // namespace at::native