forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
layer_norm_kernel.cpp
615 lines (594 loc) · 21.4 KB
/
layer_norm_kernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/layer_norm.h>
#include <cmath>
#include <tuple>
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/OpMathType.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/native/cpu/moments_utils.h>
#include <ATen/native/cpu/mixed_data_type.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty.h>
#endif
namespace at::native {
namespace {
template <typename T,
typename std::enable_if_t<!is_reduced_floating_point_v<T>, int> = 0>
void LayerNormKernelImplInternal(
const Tensor& X,
const Tensor& gamma,
const Tensor& beta,
int64_t M,
int64_t N,
T eps,
Tensor* Y,
Tensor* mean,
Tensor* rstd) {
using Vec = vec::Vectorized<T>;
const T* X_data = X.const_data_ptr<T>();
const T* gamma_data = gamma.defined() ? gamma.const_data_ptr<T>() : nullptr;
const T* beta_data = beta.defined() ? beta.const_data_ptr<T>() : nullptr;
T* Y_data = Y->data_ptr<T>();
T* mean_data = mean ? mean->data_ptr<T>() : nullptr;
T* rstd_data = rstd ? rstd->data_ptr<T>() : nullptr;
const bool gamma_null = gamma_data == nullptr;
const bool beta_null = beta_data == nullptr;
const bool mean_null = mean_data == nullptr;
const bool rstd_null = rstd_data == nullptr;
at::parallel_for(0, M, 1, [&](int64_t start, int64_t end) {
for (const auto i : c10::irange(start, end)) {
const T* X_ptr = X_data + i * N;
T* Y_ptr = Y_data + i * N;
auto [mean_val, rstd_val] = RowwiseMoments(X_ptr, N);
rstd_val = T(1) / std::sqrt(rstd_val + eps);
const T scale = rstd_val;
const T bias = - mean_val;
if (gamma_null || beta_null) {
for (const auto j : c10::irange(N)) {
const T gamma_v = gamma_null ? T(1) : gamma_data[j];
const T beta_v = beta_null ? T(0) : beta_data[j];
Y_ptr[j] = (X_ptr[j] + bias) * rstd_val * gamma_v + beta_v;
}
} else {
vec::map3<T>(
[scale, bias](Vec x, Vec gamma, Vec beta) {
return (x + Vec(bias)) * Vec(scale) * gamma + beta;
},
Y_ptr,
X_ptr,
gamma_data,
beta_data,
N);
}
if (!mean_null) {
mean_data[i] = mean_val;
}
if (!rstd_null) {
rstd_data[i] = rstd_val;
}
}
});
}
template <typename T, typename param_t,
typename std::enable_if_t<is_reduced_floating_point_v<T>, int> = 0>
void layer_norm_kernel_mixed_type(
const Tensor& X,
const Tensor& gamma,
const Tensor& beta,
int64_t M,
int64_t N,
float eps,
Tensor* Y,
Tensor* mean,
Tensor* rstd) {
using bVec = Vectorized<T>;
using fVec = Vectorized<float>;
const T* X_data = X.const_data_ptr<T>();
const param_t* gamma_data = gamma.defined() ? gamma.const_data_ptr<param_t>() : nullptr;
const param_t* beta_data = beta.defined() ? beta.const_data_ptr<param_t>() : nullptr;
T* Y_data = Y->data_ptr<T>();
param_t* mean_data = mean ? mean->data_ptr<param_t>() : nullptr;
param_t* rstd_data = rstd ? rstd->data_ptr<param_t>() : nullptr;
const bool gamma_null = gamma_data == nullptr;
const bool beta_null = beta_data == nullptr;
const bool mean_null = mean_data == nullptr;
const bool rstd_null = rstd_data == nullptr;
at::parallel_for(0, M, 1, [&](int64_t start, int64_t end) {
for (const auto i : c10::irange(start, end)) {
const T* X_ptr = X_data + i * N;
T* Y_ptr = Y_data + i * N;
auto [mean_val, rstd_val] = RowwiseMoments(X_ptr, N);
rstd_val = float(1) / std::sqrt(rstd_val + eps);
const float scale = rstd_val;
const float bias = -rstd_val * mean_val;
int64_t d = 0;
for (; d < N - (N % bVec::size()); d += bVec::size()) {
bVec x_bvec = bVec::loadu(X_ptr + d);
auto [x_fvec0, x_fvec1] = convert_to_float<T>(x_bvec);
auto [gamma_fvec0, gamma_fvec1] = gamma_null ? std::make_tuple(fVec(1), fVec(1)) : load2f(gamma_data + d);
auto [beta_fvec0, beta_fvec1] = beta_null ? std::make_tuple(fVec(0), fVec(0)) : load2f(beta_data + d);
fVec y_fvec0 = (x_fvec0 * fVec(scale) + fVec(bias)) * gamma_fvec0 + beta_fvec0;
fVec y_fvec1 = (x_fvec1 * fVec(scale) + fVec(bias)) * gamma_fvec1 + beta_fvec1;
bVec y_bvec = convert_from_float<T>(y_fvec0, y_fvec1);
y_bvec.store(Y_ptr + d);
}
for (; d < N; d++) {
const float gamma_v = gamma_null ? float(1) : float(gamma_data[d]);
const float beta_v = beta_null ? float(0) : float(beta_data[d]);
Y_ptr[d] = (float(X_ptr[d]) * scale + bias) * gamma_v + beta_v;
}
if (!mean_null) {
mean_data[i] = mean_val;
}
if (!rstd_null) {
rstd_data[i] = rstd_val;
}
}
});
}
template <typename T,
typename std::enable_if_t<is_reduced_floating_point_v<T>, int> = 0>
void LayerNormKernelImplInternal(
const Tensor& X,
const Tensor& gamma,
const Tensor& beta,
int64_t M,
int64_t N,
float eps,
Tensor* Y,
Tensor* mean,
Tensor* rstd) {
const bool mixed_type = is_mixed_type(X, gamma, beta);
if (mixed_type) {
layer_norm_kernel_mixed_type<T, float>(X, gamma, beta, M, N, eps, Y, mean, rstd);
} else {
layer_norm_kernel_mixed_type<T, T>(X, gamma, beta, M, N, eps, Y, mean, rstd);
}
}
void LayerNormKernelImpl(
const Tensor& X,
const Tensor& gamma,
const Tensor& beta,
int64_t M,
int64_t N,
double eps,
Tensor* Y,
Tensor* mean,
Tensor* rstd) {
TORCH_DCHECK_EQ(X.numel(), M * N);
DCHECK(!gamma.defined() || gamma.numel() == N);
DCHECK(!beta.defined() || beta.numel() == N);
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, X.scalar_type(),
"LayerNormKernelImpl", [&]() {
LayerNormKernelImplInternal<scalar_t>(
X, gamma, beta, M, N, eps, Y, mean, rstd);
});
}
template <typename T, typename T2, typename opmath_t>
void layer_norm_backward_frame(
const T* dY_data,
const T* X_data,
const T2* mean_data,
const T2* rstd_data,
const T2* gamma_data,
T* dX_data,
T* dgamma_buffer_ptr,
T* dbeta_buffer_ptr,
const opmath_t scale,
const bool gamma_null,
const bool dX_null,
const bool dgamma_null,
const bool dbeta_null,
int64_t N,
int64_t i) {
using Vec = vec::Vectorized<opmath_t>;
const T* dY_ptr = dY_data + i * N;
const T* X_ptr = X_data + i * N;
if (!dgamma_null) {
const opmath_t a = rstd_data[i];
const opmath_t b = -a * mean_data[i];
// Scalar math:
// for (const auto j : c10::irange(N)) {
// dgamma_data[j] += dY_ptr[j] * (a * X_ptr[j] + b);
// }
vec::map3<T>(
[a, b](Vec dgamma, Vec dy, Vec x) {
return dgamma + dy * (Vec(a) * x + Vec(b));
},
dgamma_buffer_ptr,
dgamma_buffer_ptr,
dY_ptr,
X_ptr,
N);
}
if (!dbeta_null) {
// Scalar math:
// for (const auto j : c10::irange(N)) {
// dbeta_data[j] += dY_ptr[j];
// }
vec::map2<T>(
[](Vec dbeta, Vec dy) { return dbeta + dy; },
dbeta_buffer_ptr,
dbeta_buffer_ptr,
dY_ptr,
N);
}
if (!dX_null) {
T* dX_ptr = dX_data + i * N;
opmath_t ds = opmath_t(0);
opmath_t db = opmath_t(0);
// Scalar math:
// for (const auto j : c10::irange(N)) {
// const T gamma_v = gamma_null ? T(1) : gamma_data[j];
// ds += dY_ptr[j] * X_ptr[j] * gamma_v;
// db += dY_ptr[j] * gamma_v;
// }
if (gamma_null) {
ds = vec::map2_reduce_all<T>(
[](Vec x, Vec y) { return x * y; },
[](Vec x, Vec y) { return x + y; },
dY_ptr,
X_ptr,
N);
db = vec::reduce_all<T>(
[](Vec& x, Vec& y) { return x + y; }, dY_ptr, N);
} else {
ds = vec::map3_reduce_all<T>(
[](Vec x, Vec y, Vec z) { return x * y * z; },
[](Vec x, Vec y) { return x + y; },
dY_ptr,
X_ptr,
gamma_data,
N);
db = vec::map2_reduce_all<T>(
[](Vec x, Vec y) { return x * y; },
[](Vec x, Vec y) { return x + y; },
dY_ptr,
gamma_data,
N);
}
const opmath_t a = rstd_data[i];
const opmath_t b = (db * opmath_t(mean_data[i]) - ds) * a * a * a * scale;
const opmath_t c = -b * opmath_t(mean_data[i]) - db * a * scale;
// Scalar math:
// for (const auto j : c10::irange(N)) {
// const T gamma_v = gamma_null ? T(1) : gamma_data[j];
// dX_ptr[j] = a * dY_ptr[j] * gamma_v + b * X_ptr[j] + c;
// }
if (gamma_null) {
vec::map2<T>(
[a, b, c](Vec dy, Vec x) {
return Vec(a) * dy + Vec(b) * x + Vec(c);
},
dX_ptr,
dY_ptr,
X_ptr,
N);
} else {
vec::map3<T>(
[a, b, c](Vec dy, Vec gamma, Vec x) {
return Vec(a) * dy * gamma + Vec(b) * x + Vec(c);
},
dX_ptr,
dY_ptr,
gamma_data,
X_ptr,
N);
}
}
}
template <typename T, typename T2, typename opmath_t,
typename std::enable_if_t<is_reduced_floating_point_v<T> && std::is_same<T2, float>::value, int> = 0>
void layer_norm_backward_frame(
const T* dY_data,
const T* X_data,
const float* mean_data,
const float* rstd_data,
const float* gamma_data,
T* dX_data,
T* dgamma_buffer_ptr,
T* dbeta_buffer_ptr,
const float scale,
const bool gamma_null,
const bool dX_null,
const bool dgamma_null,
const bool dbeta_null,
int64_t N,
int64_t i) {
using bVec = Vectorized<T>;
using fVec = Vectorized<float>;
const T* dY_ptr = dY_data + i * N;
const T* X_ptr = X_data + i * N;
if (!dgamma_null) {
const float a = rstd_data[i];
const float b = -a * mean_data[i];
// Scalar math:
// for (const auto j : c10::irange(N)) {
// dgamma_data[j] += dY_ptr[j] * (a * X_ptr[j] + b);
// }
vec::map3<T>(
[a, b](fVec dgamma, fVec dy, fVec x) {
return dgamma + dy * (fVec(a) * x + fVec(b));
},
dgamma_buffer_ptr,
dgamma_buffer_ptr,
dY_ptr,
X_ptr,
N);
}
if (!dbeta_null) {
// Scalar math:
// for (const auto j : c10::irange(N)) {
// dbeta_data[j] += dY_ptr[j];
// }
vec::map2<T>(
[](fVec dbeta, fVec dy) { return dbeta + dy; },
dbeta_buffer_ptr,
dbeta_buffer_ptr,
dY_ptr,
N);
}
if (!dX_null) {
T* dX_ptr = dX_data + i * N;
float ds = float(0);
float db = float(0);
// Scalar math:
// for (const auto j : c10::irange(N)) {
// const T gamma_v = gamma_null ? T(1) : gamma_data[j];
// ds += dY_ptr[j] * X_ptr[j] * gamma_v;
// db += dY_ptr[j] * gamma_v;
// }
if (gamma_null) {
ds = vec::map2_reduce_all<T>(
[](fVec x, fVec y) { return x * y; },
[](fVec x, fVec y) { return x + y; },
dY_ptr,
X_ptr,
N);
db = vec::reduce_all<T>(
[](fVec& x, fVec& y) { return x + y; }, dY_ptr, N);
} else {
if (N < bVec::size()) {
bVec x_bvec = bVec::loadu(X_ptr, N);
bVec dy_bvec = bVec::loadu(dY_ptr, N);
auto [x_fvec0, x_fvec1] = convert_to_float<T>(x_bvec);
auto [dy_fvec0, dy_fvec1] = convert_to_float<T>(dy_bvec);
auto [gamma_fvec0, gamma_fvec1] = load2f(gamma_data, N);
if (N > fVec::size()) {
fVec db_fvec0 = dy_fvec0 * gamma_fvec0;
fVec db_fvec1 = dy_fvec1 * gamma_fvec1;
fVec ds_fvec0 = x_fvec0 * db_fvec0;
fVec ds_fvec1 = x_fvec1 * db_fvec1;
ds_fvec0 = fVec::set(ds_fvec0, ds_fvec0 + ds_fvec1, N - fVec::size());
ds = vec_reduce_all<float>([](fVec x, fVec y) { return x + y; }, ds_fvec0);
db_fvec0 = fVec::set(db_fvec0, db_fvec0 + db_fvec1, N - fVec::size());
db = vec_reduce_all<float>([](fVec x, fVec y) { return x + y; }, db_fvec0);
} else {
fVec db_fvec0 = dy_fvec0 * gamma_fvec0;
fVec ds_fvec0 = x_fvec0 * db_fvec0;
ds = vec_reduce_all<float>([](fVec x, fVec y) { return x + y; }, ds_fvec0, N);
db = vec_reduce_all<float>([](fVec x, fVec y) { return x + y; }, db_fvec0, N);
}
} else {
int64_t d = bVec::size();
bVec x_bvec = bVec::loadu(X_ptr);
bVec dy_bvec = bVec::loadu(dY_ptr);
fVec ds_fvec0, ds_fvec1, db_fvec0, db_fvec1, acc_ds_fvec0, acc_ds_fvec1, acc_db_fvec0, acc_db_fvec1;
auto [x_fvec0, x_fvec1] = convert_to_float<T>(x_bvec);
auto [dy_fvec0, dy_fvec1] = convert_to_float<T>(dy_bvec);
auto [gamma_fvec0, gamma_fvec1] = load2f(gamma_data);
acc_db_fvec0 = dy_fvec0 * gamma_fvec0;
acc_db_fvec1 = dy_fvec1 * gamma_fvec1;
acc_ds_fvec0 = x_fvec0 * acc_db_fvec0;
acc_ds_fvec1 = x_fvec1 * acc_db_fvec1;
for (; d < N - (N % bVec::size()); d += bVec::size()) {
x_bvec = bVec::loadu(X_ptr + d);
dy_bvec = bVec::loadu(dY_ptr + d);
std::tie(x_fvec0, x_fvec1) = convert_to_float<T>(x_bvec);
std::tie(dy_fvec0, dy_fvec1) = convert_to_float<T>(dy_bvec);
std::tie(gamma_fvec0, gamma_fvec1) = load2f(gamma_data + d);
db_fvec0 = dy_fvec0 * gamma_fvec0;
db_fvec1 = dy_fvec1 * gamma_fvec1;
ds_fvec0 = x_fvec0 * db_fvec0;
ds_fvec1 = x_fvec1 * db_fvec1;
acc_ds_fvec0 = acc_ds_fvec0 + ds_fvec0;
acc_ds_fvec1 = acc_ds_fvec1 + ds_fvec1;
acc_db_fvec0 = acc_db_fvec0 + db_fvec0;
acc_db_fvec1 = acc_db_fvec1 + db_fvec1;
}
if (N - d > 0) {
x_bvec = bVec::loadu(X_ptr + d, N - d);
dy_bvec = bVec::loadu(dY_ptr + d, N - d);
std::tie(x_fvec0, x_fvec1) = convert_to_float<T>(x_bvec);
std::tie(dy_fvec0, dy_fvec1) = convert_to_float<T>(dy_bvec);
std::tie(gamma_fvec0, gamma_fvec1) = load2f(gamma_data + d, N - d);
if (N - d > fVec::size()) {
db_fvec0 = dy_fvec0 * gamma_fvec0;
db_fvec1 = dy_fvec1 * gamma_fvec1;
ds_fvec0 = x_fvec0 * db_fvec0;
ds_fvec1 = x_fvec1 * db_fvec1;
acc_ds_fvec0 = acc_ds_fvec0 + ds_fvec0;
acc_ds_fvec1 = fVec::set(acc_ds_fvec1, acc_ds_fvec1 + ds_fvec1, N - d - fVec::size());
acc_db_fvec0 = acc_db_fvec0 + db_fvec0;
acc_db_fvec1 = fVec::set(acc_db_fvec1, acc_db_fvec1 + db_fvec1, N - d - fVec::size());
} else {
db_fvec0 = dy_fvec0 * gamma_fvec0;
ds_fvec0 = x_fvec0 * db_fvec0;
acc_ds_fvec0 = fVec::set(acc_ds_fvec0, acc_ds_fvec0 + ds_fvec0, N - d);
acc_db_fvec0 = fVec::set(acc_db_fvec0, acc_db_fvec0 + db_fvec0, N - d);
}
}
acc_ds_fvec0 = acc_ds_fvec0 + acc_ds_fvec1;
acc_db_fvec0 = acc_db_fvec0 + acc_db_fvec1;
ds = vec_reduce_all<float>([](fVec x, fVec y) { return x + y; }, acc_ds_fvec0);
db = vec_reduce_all<float>([](fVec x, fVec y) { return x + y; }, acc_db_fvec0);
}
}
const float a = rstd_data[i];
const float b = (db * mean_data[i] - ds) * a * a * a * scale;
const float c = -b * mean_data[i] - db * a * scale;
// Scalar math:
// for (const auto j : c10::irange(N)) {
// const T gamma_v = gamma_null ? T(1) : gamma_data[j];
// dX_ptr[j] = a * dY_ptr[j] * gamma_v + b * X_ptr[j] + c;
// }
if (gamma_null) {
vec::map2<T>(
[a, b, c](fVec dy, fVec x) {
return fVec(a) * dy + fVec(b) * x + fVec(c);
},
dX_ptr,
dY_ptr,
X_ptr,
N);
} else {
int64_t d = 0;
for (; d < N - (N % bVec::size()); d += bVec::size()) {
bVec x_bvec = bVec::loadu(X_ptr + d);
bVec dy_bvec = bVec::loadu(dY_ptr + d);
auto [x_fvec0, x_fvec1] = convert_to_float<T>(x_bvec);
auto [dy_fvec0, dy_fvec1] = convert_to_float<T>(dy_bvec);
auto [gamma_fvec0, gamma_fvec1] = load2f(gamma_data + d);
fVec r_fvec0 = fVec(a) * dy_fvec0 * gamma_fvec0 + fVec(b) * x_fvec0 + fVec(c);
fVec r_fvec1 = fVec(a) * dy_fvec1 * gamma_fvec1 + fVec(b) * x_fvec1 + fVec(c);
bVec r_bvec = convert_from_float<T>(r_fvec0, r_fvec1);
r_bvec.store(dX_ptr + d);
}
if (N - d > 0) {
bVec x_bvec = bVec::loadu(X_ptr + d, N - d);
bVec dy_bvec = bVec::loadu(dY_ptr + d, N - d);
auto [x_fvec0, x_fvec1] = convert_to_float<T>(x_bvec);
auto [dy_fvec0, dy_fvec1] = convert_to_float<T>(dy_bvec);
auto [gamma_fvec0, gamma_fvec1] = load2f(gamma_data + d, N - d);
fVec r_fvec0 = fVec(a) * dy_fvec0 * gamma_fvec0 + fVec(b) * x_fvec0 + fVec(c);
fVec r_fvec1 = fVec(a) * dy_fvec1 * gamma_fvec1 + fVec(b) * x_fvec1 + fVec(c);
bVec r_bvec = convert_from_float<T>(r_fvec0, r_fvec1);
r_bvec.store(dX_ptr + d, N - d);
}
}
}
}
template <typename T, typename T2>
void LayerNormBackwardKernelImplInternal(
const Tensor& dY,
const Tensor& X,
const Tensor& mean,
const Tensor& rstd,
const Tensor& gamma,
int64_t M,
int64_t N,
Tensor* dX,
Tensor* dgamma,
Tensor* dbeta) {
using opmath_t = at::opmath_type<T>;
TORCH_DCHECK_EQ(dY.numel(), M * N);
TORCH_DCHECK_EQ(X.numel(), M * N);
TORCH_DCHECK_EQ(mean.numel(), M);
TORCH_DCHECK_EQ(rstd.numel(), M);
DCHECK(!gamma.defined() || gamma.numel() == N);
const T* dY_data = dY.template const_data_ptr<T>();
const T* X_data = X.template const_data_ptr<T>();
const T2* mean_data = mean.template const_data_ptr<T2>();
const T2* rstd_data = rstd.template const_data_ptr<T2>();
const T2* gamma_data =
gamma.defined() ? gamma.template const_data_ptr<T2>() : nullptr;
T* dX_data = dX->defined() ? dX->template data_ptr<T>() : nullptr;
T2* dgamma_data = dgamma->defined() ? dgamma->template data_ptr<T2>() : nullptr;
T2* dbeta_data = dbeta->defined() ? dbeta->template data_ptr<T2>() : nullptr;
const opmath_t scale = opmath_t(1) / static_cast<opmath_t>(N);
const bool gamma_null = gamma_data == nullptr;
const bool dX_null = dX_data == nullptr;
const bool dgamma_null = dgamma_data == nullptr;
const bool dbeta_null = dbeta_data == nullptr;
// 1. Use two path parallel reduction for dgamma and dbeta:
// First path: allocate an immediate buffer of size {2, max_threads, N},
// dgamma_buffer = buffer[0], dbeta_buffer = buffer[1]
// Parallel along dim0 and reduce dY and X along dim0 to buffer.
// Second path: parallel along dim1 and reduce buffer to dgamma and dbeta.
//
// 2. Fuse first path of dgamma/dbeta with dX to reuse X[i] and dY[i] in L1
// cache.
//
int num_threads = at::get_num_threads();
Tensor buffer = at::empty({0}, X.options());
T* buffer_data = nullptr;
if (!dgamma_null || !dbeta_null) {
// zero the immediate buffer and skip zero dgamma and dbeta
buffer.resize_({2, num_threads, N}).zero_();
buffer_data = buffer.template data_ptr<T>();
}
// First path of dgamma/dbeta and dX
at::parallel_for(0, M, 1, [&](int64_t start, int64_t end) {
int tid = at::get_thread_num();
TORCH_CHECK(
tid < num_threads,
"expect thread id smaller than ",
num_threads,
", got thread id ",
tid);
T* dgamma_buffer_ptr = dgamma_null ? nullptr : buffer_data + tid * N;
T* dbeta_buffer_ptr =
dbeta_null ? nullptr : buffer_data + num_threads * N + tid * N;
for (const auto i : c10::irange(start, end)) {
layer_norm_backward_frame<T, T2, opmath_t>(dY_data, X_data, mean_data, rstd_data, gamma_data, dX_data, dgamma_buffer_ptr, dbeta_buffer_ptr, scale, gamma_null, dX_null, dgamma_null, dbeta_null, N, i);
}
});
// Second path of dgamma/dbeta
if (buffer_data != nullptr) {
parallel_for(0, N, 1, [&](int64_t start, int64_t end) {
for (const auto j : c10::irange(start, end)) {
opmath_t dgamma_v = opmath_t(0);
opmath_t dbeta_v = opmath_t(0);
for (const auto i : c10::irange(num_threads)) {
dgamma_v += buffer_data[i * N + j];
dbeta_v += buffer_data[num_threads * N + i * N + j];
}
if (!dgamma_null) {
// NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
dgamma_data[j] = dgamma_v;
}
if (!dbeta_null) {
// NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
dbeta_data[j] = dbeta_v;
}
}
});
}
}
void LayerNormBackwardKernelImpl(
const Tensor& dY,
const Tensor& X,
const Tensor& mean,
const Tensor& rstd,
const Tensor& gamma,
int64_t M,
int64_t N,
Tensor* dX,
Tensor* dgamma,
Tensor* dbeta) {
if (at::isReducedFloatingType(X.scalar_type())) {
AT_DISPATCH_REDUCED_FLOATING_TYPES(X.scalar_type(), "LayerNormBackwardKernelImpl", [&]() {
if (gamma.scalar_type() == at::kFloat) {
LayerNormBackwardKernelImplInternal<scalar_t, float>(
dY.contiguous(), X, mean, rstd, gamma, M, N, dX, dgamma, dbeta);
} else {
LayerNormBackwardKernelImplInternal<scalar_t, scalar_t>(
dY.contiguous(), X, mean, rstd, gamma, M, N, dX, dgamma, dbeta);
}
});
} else {
AT_DISPATCH_FLOATING_TYPES(X.scalar_type(), "LayerNormBackwardKernelImpl", [&]() {
LayerNormBackwardKernelImplInternal<scalar_t, scalar_t>(
dY.contiguous(), X, mean, rstd, gamma, M, N, dX, dgamma, dbeta);
});
}
}
} // namespace
REGISTER_DISPATCH(LayerNormKernel, &LayerNormKernelImpl);
REGISTER_DISPATCH(LayerNormBackwardKernel, &LayerNormBackwardKernelImpl);
} // namespace at::native