-
Notifications
You must be signed in to change notification settings - Fork 1
/
qmi_encdec.c
877 lines (791 loc) · 27 KB
/
qmi_encdec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
/* Copyright (c) 2012-2016, 2019 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/string.h>
#include <linux/qmi_encdec.h>
#include "qmi_encdec_priv.h"
#define TLV_LEN_SIZE sizeof(uint16_t)
#define TLV_TYPE_SIZE sizeof(uint8_t)
#define OPTIONAL_TLV_TYPE_START 0x10
#ifdef CONFIG_QMI_ENCDEC_DEBUG
#define qmi_encdec_dump(prefix_str, buf, buf_len) do { \
const u8 *ptr = buf; \
int i, linelen, remaining = buf_len; \
int rowsize = 16, groupsize = 1; \
unsigned char linebuf[256]; \
for (i = 0; i < buf_len; i += rowsize) { \
linelen = min(remaining, rowsize); \
remaining -= linelen; \
hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize, \
linebuf, sizeof(linebuf), false); \
pr_debug("%s: %s\n", prefix_str, linebuf); \
} \
} while (0)
#define QMI_ENCODE_LOG_MSG(buf, buf_len) \
qmi_encdec_dump("QMI_ENCODE_MSG", buf, buf_len)
#define QMI_DECODE_LOG_MSG(buf, buf_len) \
qmi_encdec_dump("QMI_DECODE_MSG", buf, buf_len)
#define QMI_ENCODE_LOG_ELEM(level, elem_len, elem_size, buf) do { \
pr_debug("QMI_ENCODE_ELEM lvl: %d, len: %d, size: %d\n", \
level, elem_len, elem_size); \
qmi_encdec_dump("QMI_ENCODE_ELEM", buf, (elem_len * elem_size)); \
} while (0)
#define QMI_DECODE_LOG_ELEM(level, elem_len, elem_size, buf) do { \
pr_debug("QMI_DECODE_ELEM lvl: %d, len: %d, size: %d\n", \
level, elem_len, elem_size); \
qmi_encdec_dump("QMI_DECODE_ELEM", buf, (elem_len * elem_size)); \
} while (0)
#define QMI_ENCODE_LOG_TLV(tlv_type, tlv_len) \
pr_debug("QMI_ENCODE_TLV type: %d, len: %d\n", tlv_type, tlv_len)
#define QMI_DECODE_LOG_TLV(tlv_type, tlv_len) \
pr_debug("QMI_DECODE_TLV type: %d, len: %d\n", tlv_type, tlv_len)
#else
#define QMI_ENCODE_LOG_MSG(buf, buf_len) { }
#define QMI_DECODE_LOG_MSG(buf, buf_len) { }
#define QMI_ENCODE_LOG_ELEM(level, elem_len, elem_size, buf) { }
#define QMI_DECODE_LOG_ELEM(level, elem_len, elem_size, buf) { }
#define QMI_ENCODE_LOG_TLV(tlv_type, tlv_len) { }
#define QMI_DECODE_LOG_TLV(tlv_type, tlv_len) { }
#endif
static int _qmi_kernel_encode(struct elem_info *ei_array,
void *out_buf, void *in_c_struct,
uint32_t out_buf_len, int enc_level);
static int _qmi_kernel_decode(struct elem_info *ei_array,
void *out_c_struct,
void *in_buf, uint32_t in_buf_len,
int dec_level);
static struct elem_info *skip_to_next_elem(struct elem_info *ei_array,
int level);
/**
* qmi_calc_max_msg_len() - Calculate the maximum length of a QMI message
* @ei_array: Struct info array describing the structure.
* @level: Level to identify the depth of the nested structures.
*
* @return: expected maximum length of the QMI message or 0 on failure.
*/
static int qmi_calc_max_msg_len(struct elem_info *ei_array,
int level)
{
int max_msg_len = 0;
struct elem_info *temp_ei;
if (!ei_array)
return max_msg_len;
for (temp_ei = ei_array; temp_ei->data_type != QMI_EOTI; temp_ei++) {
/* Flag to identify the optional element is not encoded */
if (temp_ei->data_type == QMI_OPT_FLAG)
continue;
if (temp_ei->data_type == QMI_DATA_LEN) {
max_msg_len += (temp_ei->elem_size == sizeof(uint8_t) ?
sizeof(uint8_t) : sizeof(uint16_t));
continue;
} else if (temp_ei->data_type == QMI_STRUCT) {
max_msg_len += (temp_ei->elem_len *
qmi_calc_max_msg_len(temp_ei->ei_array,
(level + 1)));
} else if (temp_ei->data_type == QMI_STRING) {
if (level > 1)
max_msg_len += temp_ei->elem_len <= U8_MAX ?
sizeof(uint8_t) : sizeof(uint16_t);
max_msg_len += temp_ei->elem_len * temp_ei->elem_size;
} else {
max_msg_len += (temp_ei->elem_len * temp_ei->elem_size);
}
/*
* Type & Length info. not prepended for elements in the
* nested structure.
*/
if (level == 1)
max_msg_len += (TLV_TYPE_SIZE + TLV_LEN_SIZE);
}
return max_msg_len;
}
/**
* qmi_calc_min_msg_len() - Calculate the minimum length of a QMI message
* @ei_array: Struct info array describing the structure.
* @level: Level to identify the depth of the nested structures.
*
* @return: expected minimum length of the QMI message or 0 on failure.
*/
static int qmi_calc_min_msg_len(struct elem_info *ei_array,
int level)
{
int min_msg_len = 0;
struct elem_info *temp_ei = ei_array;
if (!ei_array)
return min_msg_len;
while (temp_ei->data_type != QMI_EOTI) {
/* Optional elements do not count in minimum length */
if (temp_ei->data_type == QMI_OPT_FLAG) {
temp_ei = skip_to_next_elem(temp_ei, level);
continue;
}
if (temp_ei->data_type == QMI_DATA_LEN) {
min_msg_len += (temp_ei->elem_size == sizeof(uint8_t) ?
sizeof(uint8_t) : sizeof(uint16_t));
temp_ei++;
continue;
} else if (temp_ei->data_type == QMI_STRUCT) {
min_msg_len += qmi_calc_min_msg_len(temp_ei->ei_array,
(level + 1));
temp_ei++;
} else if (temp_ei->data_type == QMI_STRING) {
if (level > 1)
min_msg_len += temp_ei->elem_len <= U8_MAX ?
sizeof(uint8_t) : sizeof(uint16_t);
min_msg_len += temp_ei->elem_len * temp_ei->elem_size;
temp_ei++;
} else {
min_msg_len += (temp_ei->elem_len * temp_ei->elem_size);
temp_ei++;
}
/*
* Type & Length info. not prepended for elements in the
* nested structure.
*/
if (level == 1)
min_msg_len += (TLV_TYPE_SIZE + TLV_LEN_SIZE);
}
return min_msg_len;
}
/**
* qmi_verify_max_msg_len() - Verify the maximum length of a QMI message
* @desc: Pointer to structure descriptor.
*
* @return: true if the maximum message length embedded in structure
* descriptor matches the calculated value, else false.
*/
bool qmi_verify_max_msg_len(struct msg_desc *desc)
{
int calc_max_msg_len;
if (!desc)
return false;
calc_max_msg_len = qmi_calc_max_msg_len(desc->ei_array, 1);
if (calc_max_msg_len != desc->max_msg_len) {
pr_err("%s: Calc. len %d != Passed len %d\n",
__func__, calc_max_msg_len, desc->max_msg_len);
return false;
}
return true;
}
/**
* qmi_kernel_encode() - Encode to QMI message wire format
* @desc: Pointer to structure descriptor.
* @out_buf: Buffer to hold the encoded QMI message.
* @out_buf_len: Length of the out buffer.
* @in_c_struct: C Structure to be encoded.
*
* @return: size of encoded message on success, < 0 for error.
*/
int qmi_kernel_encode(struct msg_desc *desc,
void *out_buf, uint32_t out_buf_len,
void *in_c_struct)
{
int enc_level = 1;
int ret, calc_max_msg_len, calc_min_msg_len;
if (!desc)
return -EINVAL;
/* Check the possibility of a zero length QMI message */
if (!in_c_struct) {
calc_min_msg_len = qmi_calc_min_msg_len(desc->ei_array, 1);
if (calc_min_msg_len) {
pr_err("%s: Calc. len %d != 0, but NULL in_c_struct\n",
__func__, calc_min_msg_len);
return -EINVAL;
} else {
return 0;
}
}
/*
* Not a zero-length message. Ensure the output buffer and
* element information array are not NULL.
*/
if (!out_buf || !desc->ei_array)
return -EINVAL;
if (desc->max_msg_len < out_buf_len)
return -ETOOSMALL;
ret = _qmi_kernel_encode(desc->ei_array, out_buf,
in_c_struct, out_buf_len, enc_level);
if (ret == -ETOOSMALL) {
calc_max_msg_len = qmi_calc_max_msg_len(desc->ei_array, 1);
pr_err("%s: Calc. len %d != Out buf len %d\n",
__func__, calc_max_msg_len, out_buf_len);
}
return ret;
}
EXPORT_SYMBOL(qmi_kernel_encode);
/**
* qmi_encode_basic_elem() - Encodes elements of basic/primary data type
* @buf_dst: Buffer to store the encoded information.
* @buf_src: Buffer containing the elements to be encoded.
* @elem_len: Number of elements, in the buf_src, to be encoded.
* @elem_size: Size of a single instance of the element to be encoded.
*
* @return: number of bytes of encoded information.
*
* This function encodes the "elem_len" number of data elements, each of
* size "elem_size" bytes from the source buffer "buf_src" and stores the
* encoded information in the destination buffer "buf_dst". The elements are
* of primary data type which include uint8_t - uint64_t or similar. This
* function returns the number of bytes of encoded information.
*/
static int qmi_encode_basic_elem(void *buf_dst, void *buf_src,
uint32_t elem_len, uint32_t elem_size)
{
uint32_t i, rc = 0;
for (i = 0; i < elem_len; i++) {
QMI_ENCDEC_ENCODE_N_BYTES(buf_dst, buf_src, elem_size);
rc += elem_size;
}
return rc;
}
/**
* qmi_encode_struct_elem() - Encodes elements of struct data type
* @ei_array: Struct info array descibing the struct element.
* @buf_dst: Buffer to store the encoded information.
* @buf_src: Buffer containing the elements to be encoded.
* @elem_len: Number of elements, in the buf_src, to be encoded.
* @out_buf_len: Available space in the encode buffer.
* @enc_level: Depth of the nested structure from the main structure.
*
* @return: Number of bytes of encoded information, on success.
* < 0 on error.
*
* This function encodes the "elem_len" number of struct elements, each of
* size "ei_array->elem_size" bytes from the source buffer "buf_src" and
* stores the encoded information in the destination buffer "buf_dst". The
* elements are of struct data type which includes any C structure. This
* function returns the number of bytes of encoded information.
*/
static int qmi_encode_struct_elem(struct elem_info *ei_array,
void *buf_dst, void *buf_src,
uint32_t elem_len, uint32_t out_buf_len,
int enc_level)
{
int i, rc, encoded_bytes = 0;
struct elem_info *temp_ei = ei_array;
for (i = 0; i < elem_len; i++) {
rc = _qmi_kernel_encode(temp_ei->ei_array, buf_dst, buf_src,
(out_buf_len - encoded_bytes),
enc_level);
if (rc < 0) {
pr_err("%s: STRUCT Encode failure\n", __func__);
return rc;
}
buf_dst = buf_dst + rc;
buf_src = buf_src + temp_ei->elem_size;
encoded_bytes += rc;
}
return encoded_bytes;
}
/**
* qmi_encode_string_elem() - Encodes elements of string data type
* @ei_array: Struct info array descibing the string element.
* @buf_dst: Buffer to store the encoded information.
* @buf_src: Buffer containing the elements to be encoded.
* @out_buf_len: Available space in the encode buffer.
* @enc_level: Depth of the string element from the main structure.
*
* @return: Number of bytes of encoded information, on success.
* < 0 on error.
*
* This function encodes a string element of maximum length "ei_array->elem_len"
* bytes from the source buffer "buf_src" and stores the encoded information in
* the destination buffer "buf_dst". This function returns the number of bytes
* of encoded information.
*/
static int qmi_encode_string_elem(struct elem_info *ei_array,
void *buf_dst, void *buf_src,
uint32_t out_buf_len, int enc_level)
{
int rc;
int encoded_bytes = 0;
struct elem_info *temp_ei = ei_array;
uint32_t string_len = 0;
uint32_t string_len_sz = 0;
string_len = strlen(buf_src);
string_len_sz = temp_ei->elem_len <= U8_MAX ?
sizeof(uint8_t) : sizeof(uint16_t);
if (string_len > temp_ei->elem_len) {
pr_err("%s: String to be encoded is longer - %d > %d\n",
__func__, string_len, temp_ei->elem_len);
return -EINVAL;
}
if (enc_level == 1) {
if (string_len + TLV_LEN_SIZE + TLV_TYPE_SIZE >
out_buf_len) {
pr_err("%s: Output len %d > Out Buf len %d\n",
__func__, string_len, out_buf_len);
return -ETOOSMALL;
}
} else {
if (string_len + string_len_sz > out_buf_len) {
pr_err("%s: Output len %d > Out Buf len %d\n",
__func__, string_len, out_buf_len);
return -ETOOSMALL;
}
rc = qmi_encode_basic_elem(buf_dst, &string_len,
1, string_len_sz);
encoded_bytes += rc;
}
rc = qmi_encode_basic_elem(buf_dst + encoded_bytes, buf_src,
string_len, temp_ei->elem_size);
encoded_bytes += rc;
QMI_ENCODE_LOG_ELEM(enc_level, string_len, temp_ei->elem_size, buf_src);
return encoded_bytes;
}
/**
* skip_to_next_elem() - Skip to next element in the structure to be encoded
* @ei_array: Struct info describing the element to be skipped.
* @level: Depth level of encoding/decoding to identify nested structures.
*
* @return: Struct info of the next element that can be encoded.
*
* This function is used while encoding optional elements. If the flag
* corresponding to an optional element is not set, then encoding the
* optional element can be skipped. This function can be used to perform
* that operation.
*/
static struct elem_info *skip_to_next_elem(struct elem_info *ei_array,
int level)
{
struct elem_info *temp_ei = ei_array;
uint8_t tlv_type;
if (level > 1) {
temp_ei = temp_ei + 1;
} else {
do {
tlv_type = temp_ei->tlv_type;
temp_ei = temp_ei + 1;
} while (tlv_type == temp_ei->tlv_type);
}
return temp_ei;
}
/**
* _qmi_kernel_encode() - Core Encode Function
* @ei_array: Struct info array describing the structure to be encoded.
* @out_buf: Buffer to hold the encoded QMI message.
* @in_c_struct: Pointer to the C structure to be encoded.
* @out_buf_len: Available space in the encode buffer.
* @enc_level: Encode level to indicate the depth of the nested structure,
* within the main structure, being encoded.
*
* @return: Number of bytes of encoded information, on success.
* < 0 on error.
*/
static int _qmi_kernel_encode(struct elem_info *ei_array,
void *out_buf, void *in_c_struct,
uint32_t out_buf_len, int enc_level)
{
struct elem_info *temp_ei = ei_array;
uint8_t opt_flag_value = 0;
uint32_t data_len_value = 0, data_len_sz;
uint8_t *buf_dst = (uint8_t *)out_buf;
uint8_t *tlv_pointer;
uint32_t tlv_len;
uint8_t tlv_type;
uint32_t encoded_bytes = 0;
void *buf_src;
int encode_tlv = 0;
int rc;
tlv_pointer = buf_dst;
tlv_len = 0;
if (enc_level == 1)
buf_dst = buf_dst + (TLV_LEN_SIZE + TLV_TYPE_SIZE);
while (temp_ei->data_type != QMI_EOTI) {
buf_src = in_c_struct + temp_ei->offset;
tlv_type = temp_ei->tlv_type;
if (temp_ei->is_array == NO_ARRAY) {
data_len_value = 1;
} else if (temp_ei->is_array == STATIC_ARRAY) {
data_len_value = temp_ei->elem_len;
} else if (data_len_value <= 0 ||
temp_ei->elem_len < data_len_value) {
pr_err("%s: Invalid data length\n", __func__);
return -EINVAL;
}
switch (temp_ei->data_type) {
case QMI_OPT_FLAG:
rc = qmi_encode_basic_elem(&opt_flag_value, buf_src,
1, sizeof(uint8_t));
if (opt_flag_value)
temp_ei = temp_ei + 1;
else
temp_ei = skip_to_next_elem(temp_ei, enc_level);
break;
case QMI_DATA_LEN:
memcpy(&data_len_value, buf_src, temp_ei->elem_size);
data_len_sz = temp_ei->elem_size == sizeof(uint8_t) ?
sizeof(uint8_t) : sizeof(uint16_t);
/* Check to avoid out of range buffer access */
if ((data_len_sz + encoded_bytes + TLV_LEN_SIZE +
TLV_TYPE_SIZE) > out_buf_len) {
pr_err("%s: Too Small Buffer @DATA_LEN\n",
__func__);
return -ETOOSMALL;
}
rc = qmi_encode_basic_elem(buf_dst, &data_len_value,
1, data_len_sz);
UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst,
encoded_bytes, tlv_len, encode_tlv, rc);
if (!data_len_value)
temp_ei = skip_to_next_elem(temp_ei, enc_level);
else
encode_tlv = 0;
break;
case QMI_UNSIGNED_1_BYTE:
case QMI_UNSIGNED_2_BYTE:
case QMI_UNSIGNED_4_BYTE:
case QMI_UNSIGNED_8_BYTE:
case QMI_SIGNED_2_BYTE_ENUM:
case QMI_SIGNED_4_BYTE_ENUM:
/* Check to avoid out of range buffer access */
if (((data_len_value * temp_ei->elem_size) +
encoded_bytes + TLV_LEN_SIZE + TLV_TYPE_SIZE) >
out_buf_len) {
pr_err("%s: Too Small Buffer @data_type:%d\n",
__func__, temp_ei->data_type);
return -ETOOSMALL;
}
rc = qmi_encode_basic_elem(buf_dst, buf_src,
data_len_value, temp_ei->elem_size);
QMI_ENCODE_LOG_ELEM(enc_level, data_len_value,
temp_ei->elem_size, buf_src);
UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst,
encoded_bytes, tlv_len, encode_tlv, rc);
break;
case QMI_STRUCT:
rc = qmi_encode_struct_elem(temp_ei, buf_dst, buf_src,
data_len_value, (out_buf_len - encoded_bytes),
(enc_level + 1));
if (rc < 0)
return rc;
UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst,
encoded_bytes, tlv_len, encode_tlv, rc);
break;
case QMI_STRING:
rc = qmi_encode_string_elem(temp_ei, buf_dst, buf_src,
out_buf_len - encoded_bytes, enc_level);
if (rc < 0)
return rc;
UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst,
encoded_bytes, tlv_len, encode_tlv, rc);
break;
default:
pr_err("%s: Unrecognized data type\n", __func__);
return -EINVAL;
}
if (encode_tlv && enc_level == 1) {
QMI_ENCDEC_ENCODE_TLV(tlv_type, tlv_len, tlv_pointer);
QMI_ENCODE_LOG_TLV(tlv_type, tlv_len);
encoded_bytes += (TLV_TYPE_SIZE + TLV_LEN_SIZE);
tlv_pointer = buf_dst;
tlv_len = 0;
buf_dst = buf_dst + TLV_LEN_SIZE + TLV_TYPE_SIZE;
encode_tlv = 0;
}
}
QMI_ENCODE_LOG_MSG(out_buf, encoded_bytes);
return encoded_bytes;
}
/**
* qmi_kernel_decode() - Decode to C Structure format
* @desc: Pointer to structure descriptor.
* @out_c_struct: Buffer to hold the decoded C structure.
* @in_buf: Buffer containg the QMI message to be decoded.
* @in_buf_len: Length of the incoming QMI message.
*
* @return: 0 on success, < 0 on error.
*/
int qmi_kernel_decode(struct msg_desc *desc, void *out_c_struct,
void *in_buf, uint32_t in_buf_len)
{
int dec_level = 1;
int rc = 0;
if (!desc || !desc->ei_array)
return -EINVAL;
if (!out_c_struct || !in_buf || !in_buf_len)
return -EINVAL;
if (desc->max_msg_len < in_buf_len)
return -EINVAL;
rc = _qmi_kernel_decode(desc->ei_array, out_c_struct,
in_buf, in_buf_len, dec_level);
if (rc < 0)
return rc;
else
return 0;
}
EXPORT_SYMBOL(qmi_kernel_decode);
/**
* qmi_decode_basic_elem() - Decodes elements of basic/primary data type
* @buf_dst: Buffer to store the decoded element.
* @buf_src: Buffer containing the elements in QMI wire format.
* @elem_len: Number of elements to be decoded.
* @elem_size: Size of a single instance of the element to be decoded.
*
* @return: Total size of the decoded data elements, in bytes.
*
* This function decodes the "elem_len" number of elements in QMI wire format,
* each of size "elem_size" bytes from the source buffer "buf_src" and stores
* the decoded elements in the destination buffer "buf_dst". The elements are
* of primary data type which include uint8_t - uint64_t or similar. This
* function returns the number of bytes of decoded information.
*/
static int qmi_decode_basic_elem(void *buf_dst, void *buf_src,
uint32_t elem_len, uint32_t elem_size)
{
uint32_t i, rc = 0;
for (i = 0; i < elem_len; i++) {
QMI_ENCDEC_DECODE_N_BYTES(buf_dst, buf_src, elem_size);
rc += elem_size;
}
return rc;
}
/**
* qmi_decode_struct_elem() - Decodes elements of struct data type
* @ei_array: Struct info array descibing the struct element.
* @buf_dst: Buffer to store the decoded element.
* @buf_src: Buffer containing the elements in QMI wire format.
* @elem_len: Number of elements to be decoded.
* @tlv_len: Total size of the encoded inforation corresponding to
* this struct element.
* @dec_level: Depth of the nested structure from the main structure.
*
* @return: Total size of the decoded data elements, on success.
* < 0 on error.
*
* This function decodes the "elem_len" number of elements in QMI wire format,
* each of size "(tlv_len/elem_len)" bytes from the source buffer "buf_src"
* and stores the decoded elements in the destination buffer "buf_dst". The
* elements are of struct data type which includes any C structure. This
* function returns the number of bytes of decoded information.
*/
static int qmi_decode_struct_elem(struct elem_info *ei_array, void *buf_dst,
void *buf_src, uint32_t elem_len,
uint32_t tlv_len, int dec_level)
{
int i, rc, decoded_bytes = 0;
struct elem_info *temp_ei = ei_array;
for (i = 0; i < elem_len && decoded_bytes < tlv_len; i++) {
rc = _qmi_kernel_decode(temp_ei->ei_array, buf_dst, buf_src,
(tlv_len - decoded_bytes), dec_level);
if (rc < 0)
return rc;
buf_src = buf_src + rc;
buf_dst = buf_dst + temp_ei->elem_size;
decoded_bytes += rc;
}
if ((dec_level <= 2 && decoded_bytes != tlv_len) ||
(dec_level > 2 && (i < elem_len || decoded_bytes > tlv_len))) {
pr_err("%s: Fault in decoding: dl(%d), db(%d), tl(%d), i(%d), el(%d)\n",
__func__, dec_level, decoded_bytes, tlv_len,
i, elem_len);
return -EFAULT;
}
return decoded_bytes;
}
/**
* qmi_decode_string_elem() - Decodes elements of string data type
* @ei_array: Struct info array descibing the string element.
* @buf_dst: Buffer to store the decoded element.
* @buf_src: Buffer containing the elements in QMI wire format.
* @tlv_len: Total size of the encoded inforation corresponding to
* this string element.
* @dec_level: Depth of the string element from the main structure.
*
* @return: Total size of the decoded data elements, on success.
* < 0 on error.
*
* This function decodes the string element of maximum length
* "ei_array->elem_len" from the source buffer "buf_src" and puts it into
* the destination buffer "buf_dst". This function returns number of bytes
* decoded from the input buffer.
*/
static int qmi_decode_string_elem(struct elem_info *ei_array, void *buf_dst,
void *buf_src, uint32_t tlv_len,
int dec_level)
{
int rc;
int decoded_bytes = 0;
uint32_t string_len = 0;
uint32_t string_len_sz = 0;
struct elem_info *temp_ei = ei_array;
if (dec_level == 1) {
string_len = tlv_len;
} else {
string_len_sz = temp_ei->elem_len <= U8_MAX ?
sizeof(uint8_t) : sizeof(uint16_t);
rc = qmi_decode_basic_elem(&string_len, buf_src,
1, string_len_sz);
decoded_bytes += rc;
}
if (string_len >= temp_ei->elem_len) {
pr_err("%s: String len %d >= Max Len %d\n",
__func__, string_len, temp_ei->elem_len);
return -ETOOSMALL;
} else if (string_len > tlv_len) {
pr_err("%s: String len %d > Input Buffer Len %d\n",
__func__, string_len, tlv_len);
return -EFAULT;
}
rc = qmi_decode_basic_elem(buf_dst, buf_src + decoded_bytes,
string_len, temp_ei->elem_size);
*((char *)buf_dst + string_len) = '\0';
decoded_bytes += rc;
QMI_DECODE_LOG_ELEM(dec_level, string_len, temp_ei->elem_size, buf_dst);
return decoded_bytes;
}
/**
* find_ei() - Find element info corresponding to TLV Type
* @ei_array: Struct info array of the message being decoded.
* @type: TLV Type of the element being searched.
*
* @return: Pointer to struct info, if found
*
* Every element that got encoded in the QMI message will have a type
* information associated with it. While decoding the QMI message,
* this function is used to find the struct info regarding the element
* that corresponds to the type being decoded.
*/
static struct elem_info *find_ei(struct elem_info *ei_array,
uint32_t type)
{
struct elem_info *temp_ei = ei_array;
while (temp_ei->data_type != QMI_EOTI) {
if (temp_ei->tlv_type == (uint8_t)type)
return temp_ei;
temp_ei = temp_ei + 1;
}
return NULL;
}
/**
* _qmi_kernel_decode() - Core Decode Function
* @ei_array: Struct info array describing the structure to be decoded.
* @out_c_struct: Buffer to hold the decoded C struct
* @in_buf: Buffer containing the QMI message to be decoded
* @in_buf_len: Length of the QMI message to be decoded
* @dec_level: Decode level to indicate the depth of the nested structure,
* within the main structure, being decoded
*
* @return: Number of bytes of decoded information, on success
* < 0 on error.
*/
static int _qmi_kernel_decode(struct elem_info *ei_array,
void *out_c_struct,
void *in_buf, uint32_t in_buf_len,
int dec_level)
{
struct elem_info *temp_ei = ei_array;
uint8_t opt_flag_value = 1;
uint32_t data_len_value = 0, data_len_sz = 0;
uint8_t *buf_dst = out_c_struct;
uint8_t *tlv_pointer;
uint32_t tlv_len = 0;
uint32_t tlv_type;
uint32_t decoded_bytes = 0;
void *buf_src = in_buf;
int rc;
QMI_DECODE_LOG_MSG(in_buf, in_buf_len);
while (decoded_bytes < in_buf_len) {
if (dec_level >= 2 && temp_ei->data_type == QMI_EOTI)
return decoded_bytes;
if (dec_level == 1) {
tlv_pointer = buf_src;
QMI_ENCDEC_DECODE_TLV(&tlv_type,
&tlv_len, tlv_pointer);
QMI_DECODE_LOG_TLV(tlv_type, tlv_len);
buf_src += (TLV_TYPE_SIZE + TLV_LEN_SIZE);
decoded_bytes += (TLV_TYPE_SIZE + TLV_LEN_SIZE);
temp_ei = find_ei(ei_array, tlv_type);
if (!temp_ei && (tlv_type < OPTIONAL_TLV_TYPE_START)) {
pr_err("%s: Inval element info\n", __func__);
return -EINVAL;
} else if (!temp_ei) {
UPDATE_DECODE_VARIABLES(buf_src,
decoded_bytes, tlv_len);
continue;
}
} else {
/*
* No length information for elements in nested
* structures. So use remaining decodable buffer space.
*/
tlv_len = in_buf_len - decoded_bytes;
}
buf_dst = out_c_struct + temp_ei->offset;
if (temp_ei->data_type == QMI_OPT_FLAG) {
memcpy(buf_dst, &opt_flag_value, sizeof(uint8_t));
temp_ei = temp_ei + 1;
buf_dst = out_c_struct + temp_ei->offset;
}
if (temp_ei->data_type == QMI_DATA_LEN) {
data_len_sz = temp_ei->elem_size == sizeof(uint8_t) ?
sizeof(uint8_t) : sizeof(uint16_t);
rc = qmi_decode_basic_elem(&data_len_value, buf_src,
1, data_len_sz);
memcpy(buf_dst, &data_len_value, sizeof(uint32_t));
temp_ei = temp_ei + 1;
buf_dst = out_c_struct + temp_ei->offset;
tlv_len -= data_len_sz;
UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc);
}
if (temp_ei->is_array == NO_ARRAY) {
data_len_value = 1;
} else if (temp_ei->is_array == STATIC_ARRAY) {
data_len_value = temp_ei->elem_len;
} else if (data_len_value > temp_ei->elem_len) {
pr_err("%s: Data len %d > max spec %d\n",
__func__, data_len_value, temp_ei->elem_len);
return -ETOOSMALL;
}
switch (temp_ei->data_type) {
case QMI_UNSIGNED_1_BYTE:
case QMI_UNSIGNED_2_BYTE:
case QMI_UNSIGNED_4_BYTE:
case QMI_UNSIGNED_8_BYTE:
case QMI_SIGNED_2_BYTE_ENUM:
case QMI_SIGNED_4_BYTE_ENUM:
rc = qmi_decode_basic_elem(buf_dst, buf_src,
data_len_value, temp_ei->elem_size);
QMI_DECODE_LOG_ELEM(dec_level, data_len_value,
temp_ei->elem_size, buf_dst);
UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc);
break;
case QMI_STRUCT:
rc = qmi_decode_struct_elem(temp_ei, buf_dst, buf_src,
data_len_value, tlv_len, (dec_level + 1));
if (rc < 0)
return rc;
UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc);
break;
case QMI_STRING:
rc = qmi_decode_string_elem(temp_ei, buf_dst, buf_src,
tlv_len, dec_level);
if (rc < 0)
return rc;
UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc);
break;
default:
pr_err("%s: Unrecognized data type\n", __func__);
return -EINVAL;
}
temp_ei = temp_ei + 1;
}
return decoded_bytes;
}
MODULE_DESCRIPTION("QMI kernel enc/dec");
MODULE_LICENSE("GPL v2");