-
Notifications
You must be signed in to change notification settings - Fork 54
/
relativeDeviation.m
51 lines (42 loc) · 1.6 KB
/
relativeDeviation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
function relativeDeviation(numOfReturnedImages, queryImageFeatureVector, dataset, folder_name, img_ext)
% input:
% numOfReturnedImages : num of images returned by query
% queryImageFeatureVector: query image in the form of a feature vector
% dataset: the whole dataset of images transformed in a matrix of
% features
%
% output:
% plot: plot images returned by query
% extract image fname from queryImage and dataset
query_im_name = queryImageFeatureVector(:, end);
dataset_im_names = dataset(:, end);
queryImageFeatureVector(:, end) = [];
dataset(:, end) = [];
% compute relative deviation
relDeviation = zeros(length(dataset), 1);
for k = 1:length(dataset)
relDeviation(k) = sqrt( sum( power( dataset(k, :) - queryImageFeatureVector, 2 ) ) ) ./ 1/2 * ( sqrt( sum( power( dataset(k, :), 2 ) ) ) + sqrt( sum( power( queryImageFeatureVector, 2 ) ) ) );
end
% add image fnames to euclidean
relDeviation = [relDeviation dataset_im_names];
% sort them according to smallest distance
[sortRelDist indxs] = sortrows(relDeviation);
sortedRelImgs = sortRelDist(:, 2);
% clear axes
arrayfun(@cla, findall(0, 'type', 'axes'));
% display query image
str_img_name = int2str(query_im_name);
query_im = imread( strcat(folder_name, '\', str_img_name, img_ext) );
subplot(3, 7, 1);
imshow(query_im, []);
title('Query Image', 'Color', [1 0 0]);
% dispaly images returned by query
for m = 1:numOfReturnedImages
im_name = sortedRelImgs(m);
im_name = int2str(im_name);
str_im_name = strcat(folder_name, '\', im_name, img_ext);
returned_im = imread(str_im_name);
subplot(3, 7, m+1);
imshow(returned_im, []);
end
end