forked from omaralvarez/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
segNet.cpp
500 lines (372 loc) · 15.6 KB
/
segNet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/*
* http://github.com/dusty-nv/jetson-inference
*/
#include "segNet.h"
#include "cudaMappedMemory.h"
#include "cudaOverlay.h"
#include "cudaResize.h"
#include "commandLine.h"
// constructor
segNet::segNet() : tensorNet()
{
mClassColors[0] = NULL; // cpu ptr
mClassColors[1] = NULL; // gpu ptr
mClassMap[0] = NULL;
mClassMap[1] = NULL;
}
// destructor
segNet::~segNet()
{
}
// Create
segNet* segNet::Create( NetworkType networkType, uint32_t maxBatchSize )
{
if( networkType == FCN_ALEXNET_PASCAL_VOC )
return Create("networks/FCN-Alexnet-Pascal-VOC/deploy.prototxt", "networks/FCN-Alexnet-Pascal-VOC/snapshot_iter_146400.caffemodel", "networks/FCN-Alexnet-Pascal-VOC/pascal-voc-classes.txt", "networks/FCN-Alexnet-Pascal-VOC/pascal-voc-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize );
else if( networkType == FCN_ALEXNET_SYNTHIA_CVPR16 )
return Create("networks/FCN-Alexnet-SYNTHIA-CVPR16/deploy.prototxt", "networks/FCN-Alexnet-SYNTHIA-CVPR16/snapshot_iter_1206700.caffemodel", "networks/FCN-Alexnet-SYNTHIA-CVPR16/synthia-cvpr16-labels.txt", "networks/FCN-Alexnet-SYNTHIA-CVPR16/synthia-cvpr16-train-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize );
else if( networkType == FCN_ALEXNET_SYNTHIA_SUMMER_HD )
return Create("networks/FCN-Alexnet-SYNTHIA-Summer-HD/deploy.prototxt", "networks/FCN-Alexnet-SYNTHIA-Summer-HD/snapshot_iter_902888.caffemodel", "networks/FCN-Alexnet-SYNTHIA-Summer-HD/synthia-seq-labels.txt", "networks/FCN-Alexnet-SYNTHIA-Summer-HD/synthia-seq-train-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize );
else if( networkType == FCN_ALEXNET_SYNTHIA_SUMMER_SD )
return Create("networks/FCN-Alexnet-SYNTHIA-Summer-SD/deploy.prototxt", "networks/FCN-Alexnet-SYNTHIA-Summer-SD/snapshot_iter_431816.caffemodel", "networks/FCN-Alexnet-SYNTHIA-Summer-SD/synthia-seq-labels.txt", "networks/FCN-Alexnet-SYNTHIA-Summer-SD/synthia-seq-train-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize );
else if( networkType == FCN_ALEXNET_CITYSCAPES_HD )
return Create("networks/FCN-Alexnet-Cityscapes-HD/deploy.prototxt", "networks/FCN-Alexnet-Cityscapes-HD/snapshot_iter_367568.caffemodel", "networks/FCN-Alexnet-Cityscapes-HD/cityscapes-labels.txt", "networks/FCN-Alexnet-Cityscapes-HD/cityscapes-deploy-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize );
else if( networkType == FCN_ALEXNET_CITYSCAPES_SD )
return Create("networks/FCN-Alexnet-Cityscapes-SD/deploy.prototxt", "networks/FCN-Alexnet-Cityscapes-SD/snapshot_iter_114860.caffemodel", "networks/FCN-Alexnet-Cityscapes-SD/cityscapes-labels.txt", "networks/FCN-Alexnet-Cityscapes-SD/cityscapes-deploy-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize );
//else if( networkType == FCN_ALEXNET_AERIAL_FPV_720p_4ch )
// return Create("FCN-Alexnet-Aerial-FPV-4ch-720p/deploy.prototxt", "FCN-Alexnet-Aerial-FPV-4ch-720p/snapshot_iter_1777146.caffemodel", "FCN-Alexnet-Aerial-FPV-4ch-720p/fpv-labels.txt", "FCN-Alexnet-Aerial-FPV-4ch-720p/fpv-deploy-colors.txt", "data", "score_fr_4classes", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize );
else if( networkType == FCN_ALEXNET_AERIAL_FPV_720p )
return Create("networks/FCN-Alexnet-Aerial-FPV-720p/fcn_alexnet.deploy.prototxt", "networks/FCN-Alexnet-Aerial-FPV-720p/snapshot_iter_10280.caffemodel", "networks/FCN-Alexnet-Aerial-FPV-720p/fpv-labels.txt", "networks/FCN-Alexnet-Aerial-FPV-720p/fpv-deploy-colors.txt", SEGNET_DEFAULT_INPUT, SEGNET_DEFAULT_OUTPUT, maxBatchSize );
else
return NULL;
}
// Create
segNet* segNet::Create( int argc, char** argv )
{
commandLine cmdLine(argc, argv);
const char* modelName = cmdLine.GetString("model");
if( !modelName )
{
modelName = "fcn-alexnet-cityscapes-sd";
if( argc > 3 )
modelName = argv[3];
segNet::NetworkType type = segNet::SEGNET_CUSTOM;
if( strcasecmp(modelName, "fcn-alexnet-cityscapes-sd") == 0 || strcasecmp(modelName, "fcn-alexnet-cityscapes") == 0 )
type = segNet::FCN_ALEXNET_CITYSCAPES_SD;
else if( strcasecmp(modelName, "fcn-alexnet-cityscapes-hd") == 0 )
type = segNet::FCN_ALEXNET_CITYSCAPES_HD;
else if( strcasecmp(modelName, "fcn-alexnet-pascal-voc") == 0 )
type = segNet::FCN_ALEXNET_PASCAL_VOC;
else if( strcasecmp(modelName, "fcn-alexnet-synthia-cvpr16") == 0 )
type = segNet::FCN_ALEXNET_SYNTHIA_CVPR16;
else if( strcasecmp(modelName, "fcn-alexnet-synthia-summer-sd") == 0 || strcasecmp(modelName, "fcn-alexnet-synthia-summer") == 0)
type = segNet::FCN_ALEXNET_SYNTHIA_SUMMER_SD;
else if( strcasecmp(modelName, "fcn-alexnet-synthia-summer-hd") == 0 )
type = segNet::FCN_ALEXNET_SYNTHIA_SUMMER_HD;
else if( strcasecmp(modelName, "fcn-alexnet-aerial-fpv-720p") == 0 )
type = segNet::FCN_ALEXNET_AERIAL_FPV_720p;
/*else if( strcasecmp(modelName, "fcn-alexnet-aerial-fpv-720p-4ch") == 0 )
type = segNet::FCN_ALEXNET_AERIAL_FPV_720p_4ch;
else if( strcasecmp(modelName, "fcn-alexnet-aerial-fpv-720p-21ch") == 0 )
type = segNet::FCN_ALEXNET_AERIAL_FPV_720p_21ch;*/
// create segnet from pretrained model
return segNet::Create(type);
}
else
{
const char* prototxt = cmdLine.GetString("prototxt");
const char* labels = cmdLine.GetString("labels");
const char* colors = cmdLine.GetString("colors");
const char* input = cmdLine.GetString("input_blob");
const char* output = cmdLine.GetString("output_blob");
if( !input ) input = SEGNET_DEFAULT_INPUT;
if( !output ) output = SEGNET_DEFAULT_OUTPUT;
int maxBatchSize = cmdLine.GetInt("batch_size");
if( maxBatchSize < 1 )
maxBatchSize = 2;
return segNet::Create(prototxt, modelName, labels, colors, input, output, maxBatchSize);
}
}
// Create
segNet* segNet::Create( const char* prototxt, const char* model, const char* labels_path, const char* colors_path, const char* input_blob, const char* output_blob, uint32_t maxBatchSize )
{
// create segmentation model
segNet* net = new segNet();
if( !net )
return NULL;
printf("\n");
printf("segNet -- loading segmentation network model from:\n");
printf(" -- prototxt: %s\n", prototxt);
printf(" -- model: %s\n", model);
printf(" -- labels: %s\n", labels_path);
printf(" -- colors: %s\n", colors_path);
printf(" -- input_blob '%s'\n", input_blob);
printf(" -- output_blob '%s'\n", output_blob);
printf(" -- batch_size %u\n\n", maxBatchSize);
//net->EnableProfiler();
//net->EnableDebug();
//net->DisableFP16(); // debug;
// load network
std::vector<std::string> output_blobs;
output_blobs.push_back(output_blob);
if( !net->LoadNetwork(prototxt, model, NULL, input_blob, output_blobs, maxBatchSize) )
{
printf("segNet -- failed to initialize.\n");
return NULL;
}
// initialize array of class colors
const uint32_t numClasses = net->GetNumClasses();
if( !cudaAllocMapped((void**)&net->mClassColors[0], (void**)&net->mClassColors[1], numClasses * sizeof(float4)) )
return NULL;
for( uint32_t n=0; n < numClasses; n++ )
{
net->mClassColors[0][n*4+0] = 255.0f; // r
net->mClassColors[0][n*4+1] = 0.0f; // g
net->mClassColors[0][n*4+2] = 0.0f; // b
net->mClassColors[0][n*4+3] = 255.0f; // a
}
// initialize array of classified argmax
const int s_w = net->mOutputs[0].dims.w;
const int s_h = net->mOutputs[0].dims.h;
const int s_c = net->mOutputs[0].dims.c;
printf(LOG_GIE "segNet outputs -- s_w %i s_h %i s_c %i\n", s_w, s_h, s_c);
if( !cudaAllocMapped((void**)&net->mClassMap[0], (void**)&net->mClassMap[1], s_w * s_h * sizeof(uint8_t)) )
return NULL;
// load class info
net->loadClassColors(colors_path);
net->loadClassLabels(labels_path);
return net;
}
// loadClassColors
bool segNet::loadClassColors( const char* filename )
{
if( !filename )
return false;
FILE* f = fopen(filename, "r");
if( !f )
{
printf("segNet -- failed to open %s\n", filename);
return false;
}
char str[512];
int idx = 0;
while( fgets(str, 512, f) != NULL )
{
const int len = strlen(str);
if( len > 0 )
{
if( str[len-1] == '\n' )
str[len-1] = 0;
int r = 255;
int g = 255;
int b = 255;
int a = 255;
sscanf(str, "%i %i %i %i", &r, &g, &b, &a);
printf("segNet -- class %02i color %i %i %i %i\n", idx, r, g, b, a);
SetClassColor(idx, r, g, b, a);
idx++;
}
}
fclose(f);
printf("segNet -- loaded %i class colors\n", idx);
if( idx == 0 )
return false;
return true;
}
// loadClassLabels
bool segNet::loadClassLabels( const char* filename )
{
if( !filename )
return false;
FILE* f = fopen(filename, "r");
if( !f )
{
printf("segNet -- failed to open %s\n", filename);
return false;
}
char str[512];
while( fgets(str, 512, f) != NULL )
{
const int len = strlen(str);
if( len > 0 )
{
if( str[len-1] == '\n' )
str[len-1] = 0;
printf("segNet -- class %02zu label '%s'\n", mClassLabels.size(), str);
mClassLabels.push_back(str);
}
}
fclose(f);
printf("segNet -- loaded %zu class labels\n", mClassLabels.size());
if( mClassLabels.size() == 0 )
return false;
return true;
}
// SetClassColor
void segNet::SetClassColor( uint32_t classIndex, float r, float g, float b, float a )
{
if( classIndex >= GetNumClasses() || !mClassColors[0] )
return;
const uint32_t i = classIndex * 4;
mClassColors[0][i+0] = r;
mClassColors[0][i+1] = g;
mClassColors[0][i+2] = b;
mClassColors[0][i+3] = a;
}
// SetGlobalAlpha
void segNet::SetGlobalAlpha( float alpha, bool explicit_exempt )
{
const uint32_t numClasses = GetNumClasses();
for( uint32_t n=0; n < numClasses; n++ )
{
if( !explicit_exempt || mClassColors[0][n*4+3] == 255 )
mClassColors[0][n*4+3] = alpha;
}
}
// FindClassID
int segNet::FindClassID( const char* label_name )
{
if( !label_name )
return -1;
const uint32_t numLabels = mClassLabels.size();
for( uint32_t n=0; n < numLabels; n++ )
{
if( strcasecmp(label_name, mClassLabels[n].c_str()) == 0 )
return n;
}
return -1;
}
// declaration from imageNet.cu
cudaError_t cudaPreImageNet( float4* input, size_t inputWidth, size_t inputHeight, float* output, size_t outputWidth, size_t outputHeight );
// Overlay
bool segNet::Overlay( float* rgba, float* output, uint32_t width, uint32_t height, const char* ignore_class )
{
if( !rgba || width == 0 || height == 0 || !output )
{
printf("segNet::Overlay( 0x%p, %u, %u ) -> invalid parameters\n", rgba, width, height);
return false;
}
// downsample and convert to band-sequential BGR
if( CUDA_FAILED(cudaPreImageNet((float4*)rgba, width, height, mInputCUDA, mWidth, mHeight)) )
{
printf("segNet::Overlay() -- cudaPreImageNet failed\n");
return false;
}
// process with GIE
void* inferenceBuffers[] = { mInputCUDA, mOutputs[0].CUDA };
if( !mContext->execute(1, inferenceBuffers) )
{
printf(LOG_GIE "segNet::Overlay() -- failed to execute tensorRT context\n");
return false;
}
PROFILER_REPORT(); // report total time, when profiling enabled
// retrieve scores
float* scores = mOutputs[0].CPU;
const int s_w = mOutputs[0].dims.w;
const int s_h = mOutputs[0].dims.h;
const int s_c = mOutputs[0].dims.c;
//const float s_x = float(width) / float(s_w); // TODO bug: this should use mWidth/mHeight dimensions, in case user dimensions are different
//const float s_y = float(height) / float(s_h);
const float s_x = float(s_w) / float(mWidth);
const float s_y = float(s_h) / float(mHeight);
// if desired, find the ID of the class to ignore (typically void)
const int ignoreID = FindClassID(ignore_class);
printf(LOG_GIE "segNet::Overlay -- s_w %i s_h %i s_c %i s_x %f s_y %f\n", s_w, s_h, s_c, s_x, s_y);
printf(LOG_GIE "segNet::Overlay -- ignoring class '%s' id=%i\n", ignore_class, ignoreID);
// find the argmax-classified class of each tile
uint8_t* classMap = mClassMap[0];
for( uint32_t y=0; y < s_h; y++ )
{
for( uint32_t x=0; x < s_w; x++ )
{
float p_max[3] = {-100000.0f, -100000.0f, -100000.0f };
int c_max[3] = { -1, -1, -1 };
for( uint32_t c=0; c < s_c; c++ ) // classes
{
const float p = scores[c * s_w * s_h + y * s_w + x];
if( c_max[0] < 0 || p > p_max[0] )
{
p_max[0] = p;
c_max[0] = c;
}
else if( c_max[1] < 0 || p > p_max[1] )
{
p_max[1] = p;
c_max[1] = c;
}
else if( c_max[2] < 0 || p > p_max[2] )
{
p_max[2] = p;
c_max[2] = c;
}
}
/*printf("%02u %u class %i %f %s class %i %f %s class %i %f %s\n", x, y,
c_max[0], p_max[0], (c_max[0] >= 0 && c_max[0] < GetNumClasses()) ? GetClassLabel(c_max[0]) : " ",
c_max[1], p_max[1], (c_max[1] >= 0 && c_max[1] < GetNumClasses()) ? GetClassLabel(c_max[1]) : " ",
c_max[2], p_max[2], (c_max[2] >= 0 && c_max[2] < GetNumClasses()) ? GetClassLabel(c_max[2]) : " ");
*/
const int argmax = (c_max[0] == ignoreID) ? c_max[1] : c_max[0];
classMap[y * s_w + x] = argmax;
}
}
// overlay pixels onto original
for( uint32_t y=0; y < height; y++ )
{
for( uint32_t x=0; x < width; x++ )
{
const float cx = float(x) * s_x;
const float cy = float(y) * s_y;
const int x1 = int(cx);
const int y1 = int(cy);
const int x2 = x1 + 1;
const int y2 = y1 + 1;
#define CHK_BOUNDS(x, y) ( (y < 0 ? 0 : (y >= (s_h - 1) ? (s_h - 1) : y)) * s_w + (x < 0 ? 0 : (x >= (s_w - 1) ? (s_w - 1) : x)) )
/*const uint8_t classIdx[] = { classMap[y1 * s_w + x1],
classMap[y1 * s_w + x2],
classMap[y2 * s_w + x2],
classMap[y2 * s_w + x1] };*/
const uint8_t classIdx[] = { classMap[CHK_BOUNDS(x1, y1)],
classMap[CHK_BOUNDS(x2, y1)],
classMap[CHK_BOUNDS(x2, y2)],
classMap[CHK_BOUNDS(x1, y2)] };
float* cc[] = { GetClassColor(classIdx[0]),
GetClassColor(classIdx[1]),
GetClassColor(classIdx[2]),
GetClassColor(classIdx[3]) };
const float x1d = cx - float(x1);
const float y1d = cy - float(y1);
const float x2d = 1.0f - x1d;
const float y2d = 1.0f - y1d;
const float x1f = 1.0f - x1d;
const float y1f = 1.0f - y1d;
const float x2f = 1.0f - x1f;
const float y2f = 1.0f - y1f;
int c_index = 0;
/*if( y2d > y1d )
{
if( x2d > y2d ) c_index = 2;
else c_index = 3;
}
else
{
if( x2d > y2d ) c_index = 1;
else c_index = 0;
}*/
//float* c_color = GetClassColor(classIdx[c_index]);
//printf("x %u y %u cx %f cy %f x1d %f y1d %f x2d %f y2d %f c %i\n", x, y, cx, cy, x1d, y1d, x2d, y2d, c_index);
float c_color[] = { cc[0][0] * x1f * y1f + cc[1][0] * x2f * y1f + cc[2][0] * x2f * y2f + cc[3][0] * x1f * y2f,
cc[0][1] * x1f * y1f + cc[1][1] * x2f * y1f + cc[2][1] * x2f * y2f + cc[3][1] * x1f * y2f,
cc[0][2] * x1f * y1f + cc[1][2] * x2f * y1f + cc[2][2] * x2f * y2f + cc[3][2] * x1f * y2f,
cc[0][3] * x1f * y1f + cc[1][3] * x2f * y1f + cc[2][3] * x2f * y2f + cc[3][3] * x1f * y2f };
float* px_in = rgba + (((y * width * 4) + x * 4));
float* px_out = output + (((y * width * 4) + x * 4));
const float alph = c_color[3] / 255.0f;
const float inva = 1.0f - alph;
px_out[0] = alph * c_color[0] + inva * px_in[0];
px_out[1] = alph * c_color[1] + inva * px_in[1];
px_out[2] = alph * c_color[2] + inva * px_in[2];
px_out[3] = 255.0f;
}
}
return true;
}